blob: 48d490d30f5912bf934afd3dfbffd54437d13ae0 [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/LU>
namespace {
template <typename Scalar>
void constructors() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// l-value
const SkewSymmetricMatrix3<Scalar> s1(v);
const Vector& v1 = s1.vector();
VERIFY_IS_APPROX(v1, v);
VERIFY(s1.cols() == 3);
VERIFY(s1.rows() == 3);
// r-value
const SkewSymmetricMatrix3<Scalar> s2(std::move(v));
VERIFY_IS_APPROX(v1, s2.vector());
VERIFY_IS_APPROX(s1.toDenseMatrix(), s2.toDenseMatrix());
// from scalars
SkewSymmetricMatrix3<Scalar> s4(v1(0), v1(1), v1(2));
VERIFY_IS_APPROX(v1, s4.vector());
// constructors with four vectors do not compile
// Matrix<Scalar, 4, 1> vector4 = Matrix<Scalar, 4, 1>::Random();
// SkewSymmetricMatrix3<Scalar> s5(vector4);
}
template <typename Scalar>
void assignments() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v = Vector::Random();
// assign to square matrix
SquareMatrix sq;
sq = v.asSkewSymmetric();
VERIFY(sq.isSkewSymmetric());
// assign to skew symmetric matrix
SkewSymmetricMatrix3<Scalar> sk;
sk = v.asSkewSymmetric();
VERIFY_IS_APPROX(v, sk.vector());
}
template <typename Scalar>
void plusMinus() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v1 = Vector::Random();
const Vector v2 = Vector::Random();
SquareMatrix sq1;
sq1 = v1.asSkewSymmetric();
SquareMatrix sq2;
sq2 = v2.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk1;
sk1 = v1.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk2;
sk2 = v2.asSkewSymmetric();
VERIFY_IS_APPROX((sk1 + sk2).toDenseMatrix(), sq1 + sq2);
VERIFY_IS_APPROX((sk1 - sk2).toDenseMatrix(), sq1 - sq2);
SquareMatrix sq3 = v1.asSkewSymmetric();
VERIFY_IS_APPROX(sq3 = v1.asSkewSymmetric() + v2.asSkewSymmetric(), sq1 + sq2);
VERIFY_IS_APPROX(sq3 = v1.asSkewSymmetric() - v2.asSkewSymmetric(), sq1 - sq2);
VERIFY_IS_APPROX(sq3 = v1.asSkewSymmetric() - 2 * v2.asSkewSymmetric() + v1.asSkewSymmetric(), sq1 - 2 * sq2 + sq1);
VERIFY_IS_APPROX((sk1 + sk1).vector(), 2 * v1);
VERIFY((sk1 - sk1).vector().isZero());
VERIFY((sk1 - sk1).toDenseMatrix().isZero());
}
template <typename Scalar>
void multiplyScale() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v1 = Vector::Random();
SquareMatrix sq1;
sq1 = v1.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk1;
sk1 = v1.asSkewSymmetric();
const Scalar s1 = internal::random<Scalar>();
VERIFY_IS_APPROX(SkewSymmetricMatrix3<Scalar>(sk1 * s1).vector(), sk1.vector() * s1);
VERIFY_IS_APPROX(SkewSymmetricMatrix3<Scalar>(s1 * sk1).vector(), s1 * sk1.vector());
VERIFY_IS_APPROX(sq1 * (sk1 * s1), (sq1 * sk1) * s1);
const Vector v2 = Vector::Random();
SquareMatrix sq2;
sq2 = v2.asSkewSymmetric();
SkewSymmetricMatrix3<Scalar> sk2;
sk2 = v2.asSkewSymmetric();
VERIFY_IS_APPROX(sk1 * sk2, sq1 * sq2);
// null space
VERIFY((sk1 * v1).isZero());
VERIFY((sk2 * v2).isZero());
}
template <typename Matrix>
void skewSymmetricMultiplication(const Matrix& m) {
typedef Eigen::Matrix<typename Matrix::Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
const Matrix m1 = Matrix::Random(m.rows(), m.cols());
const SkewSymmetricMatrix3<typename Matrix::Scalar> sk = v.asSkewSymmetric();
VERIFY_IS_APPROX(m1.transpose() * (sk * m1), (m1.transpose() * sk) * m1);
VERIFY((m1.transpose() * (sk * m1)).isSkewSymmetric());
}
template <typename Scalar>
void traceAndDet() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// this does not work, values larger than 1.e-08 can be seen
// VERIFY_IS_APPROX(sq.determinant(), static_cast<Scalar>(0));
VERIFY_IS_APPROX(v.asSkewSymmetric().determinant(), static_cast<Scalar>(0));
VERIFY_IS_APPROX(v.asSkewSymmetric().toDenseMatrix().trace(), static_cast<Scalar>(0));
}
template <typename Scalar>
void transpose() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v = Vector::Random();
// By definition of a skew symmetric matrix: A^T = -A
VERIFY_IS_APPROX(v.asSkewSymmetric().toDenseMatrix().transpose(), v.asSkewSymmetric().transpose().toDenseMatrix());
VERIFY_IS_APPROX(v.asSkewSymmetric().transpose().vector(), (-v).asSkewSymmetric().vector());
}
template <typename Scalar>
void exponentialIdentity() {
typedef Matrix<Scalar, 3, 1> Vector;
const Vector v1 = Vector::Zero();
VERIFY(v1.asSkewSymmetric().exponential().isIdentity());
Vector v2 = Vector::Random();
v2.normalize();
VERIFY((2 * EIGEN_PI * v2).asSkewSymmetric().exponential().isIdentity());
Vector v3;
const auto precision = static_cast<Scalar>(1.1) * NumTraits<Scalar>::dummy_precision();
v3 << 0, 0, precision;
VERIFY(v3.asSkewSymmetric().exponential().isIdentity(precision));
}
template <typename Scalar>
void exponentialOrthogonality() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
const Vector v = Vector::Random();
SquareMatrix sq = v.asSkewSymmetric().exponential();
VERIFY(sq.isUnitary());
}
template <typename Scalar>
void exponentialRotation() {
typedef Matrix<Scalar, 3, 1> Vector;
typedef Matrix<Scalar, 3, 3> SquareMatrix;
// rotation axis is invariant
const Vector v1 = Vector::Random();
const SquareMatrix r1 = v1.asSkewSymmetric().exponential();
VERIFY_IS_APPROX(r1 * v1, v1);
// rotate around z-axis
Vector v2;
v2 << 0, 0, Scalar(EIGEN_PI);
const SquareMatrix r2 = v2.asSkewSymmetric().exponential();
VERIFY_IS_APPROX(r2 * (Vector() << 1, 0, 0).finished(), (Vector() << -1, 0, 0).finished());
VERIFY_IS_APPROX(r2 * (Vector() << 0, 1, 0).finished(), (Vector() << 0, -1, 0).finished());
}
} // namespace
EIGEN_DECLARE_TEST(skew_symmetric_matrix3) {
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(constructors<float>());
CALL_SUBTEST_1(constructors<double>());
CALL_SUBTEST_1(assignments<float>());
CALL_SUBTEST_1(assignments<double>());
CALL_SUBTEST_2(plusMinus<float>());
CALL_SUBTEST_2(plusMinus<double>());
CALL_SUBTEST_2(multiplyScale<float>());
CALL_SUBTEST_2(multiplyScale<double>());
CALL_SUBTEST_2(skewSymmetricMultiplication(MatrixXf(3, internal::random<int>(3, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(skewSymmetricMultiplication(MatrixXd(3, internal::random<int>(3, EIGEN_TEST_MAX_SIZE))));
CALL_SUBTEST_2(traceAndDet<float>());
CALL_SUBTEST_2(traceAndDet<double>());
CALL_SUBTEST_2(transpose<float>());
CALL_SUBTEST_2(transpose<double>());
CALL_SUBTEST_3(exponentialIdentity<float>());
CALL_SUBTEST_3(exponentialIdentity<double>());
CALL_SUBTEST_3(exponentialOrthogonality<float>());
CALL_SUBTEST_3(exponentialOrthogonality<double>());
CALL_SUBTEST_3(exponentialRotation<float>());
CALL_SUBTEST_3(exponentialRotation<double>());
}
}