blob: 0cb4d3a507b3b3441e020fc4c1c9d1894fa0c9be [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <iostream>
#include <fstream>
#include <iomanip>
#include "main.h"
#include <Eigen/LevenbergMarquardt>
using namespace std;
using namespace Eigen;
template <typename Scalar>
struct sparseGaussianTest : SparseFunctor<Scalar, int> {
typedef Matrix<Scalar, Dynamic, 1> VectorType;
typedef SparseFunctor<Scalar, int> Base;
typedef typename Base::JacobianType JacobianType;
sparseGaussianTest(int inputs, int values) : SparseFunctor<Scalar, int>(inputs, values) {}
VectorType model(const VectorType& uv, VectorType& x) {
VectorType y; // Change this to use expression template
int m = Base::values();
int n = Base::inputs();
eigen_assert(uv.size() % 2 == 0);
eigen_assert(uv.size() == n);
eigen_assert(x.size() == m);
y.setZero(m);
int half = n / 2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
Scalar coeff;
for (int j = 0; j < m; j++) {
for (int i = 0; i < half; i++) {
coeff = (x(j) - i) / v(i);
coeff *= coeff;
if (coeff < 1. && coeff > 0.) y(j) += u(i) * std::pow((1 - coeff), 2);
}
}
return y;
}
void initPoints(VectorType& uv_ref, VectorType& x) {
m_x = x;
m_y = this->model(uv_ref, x);
}
int operator()(const VectorType& uv, VectorType& fvec) {
int m = Base::values();
int n = Base::inputs();
eigen_assert(uv.size() % 2 == 0);
eigen_assert(uv.size() == n);
int half = n / 2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
fvec = m_y;
Scalar coeff;
for (int j = 0; j < m; j++) {
for (int i = 0; i < half; i++) {
coeff = (m_x(j) - i) / v(i);
coeff *= coeff;
if (coeff < 1. && coeff > 0.) fvec(j) -= u(i) * std::pow((1 - coeff), 2);
}
}
return 0;
}
int df(const VectorType& uv, JacobianType& fjac) {
int m = Base::values();
int n = Base::inputs();
eigen_assert(n == uv.size());
eigen_assert(fjac.rows() == m);
eigen_assert(fjac.cols() == n);
int half = n / 2;
VectorBlock<const VectorType> u(uv, 0, half);
VectorBlock<const VectorType> v(uv, half, half);
Scalar coeff;
// Derivatives with respect to u
for (int col = 0; col < half; col++) {
for (int row = 0; row < m; row++) {
coeff = (m_x(row) - col) / v(col);
coeff = coeff * coeff;
if (coeff < 1. && coeff > 0.) {
fjac.coeffRef(row, col) = -(1 - coeff) * (1 - coeff);
}
}
}
// Derivatives with respect to v
for (int col = 0; col < half; col++) {
for (int row = 0; row < m; row++) {
coeff = (m_x(row) - col) / v(col);
coeff = coeff * coeff;
if (coeff < 1. && coeff > 0.) {
fjac.coeffRef(row, col + half) = -4 * (u(col) / v(col)) * coeff * (1 - coeff);
}
}
}
return 0;
}
VectorType m_x, m_y; // Data points
};
template <typename T>
void test_sparseLM_T() {
typedef Matrix<T, Dynamic, 1> VectorType;
int inputs = 10;
int values = 2000;
sparseGaussianTest<T> sparse_gaussian(inputs, values);
VectorType uv(inputs), uv_ref(inputs);
VectorType x(values);
// Generate the reference solution
uv_ref << -2, 1, 4, 8, 6, 1.8, 1.2, 1.1, 1.9, 3;
// Generate the reference data points
x.setRandom();
x = 10 * x;
x.array() += 10;
sparse_gaussian.initPoints(uv_ref, x);
// Generate the initial parameters
VectorBlock<VectorType> u(uv, 0, inputs / 2);
VectorBlock<VectorType> v(uv, inputs / 2, inputs / 2);
v.setOnes();
// Generate u or Solve for u from v
u.setOnes();
// Solve the optimization problem
LevenbergMarquardt<sparseGaussianTest<T> > lm(sparse_gaussian);
int info;
// info = lm.minimize(uv);
VERIFY_IS_EQUAL(info, 1);
// Do a step by step solution and save the residual
int maxiter = 200;
int iter = 0;
MatrixXd Err(values, maxiter);
MatrixXd Mod(values, maxiter);
LevenbergMarquardtSpace::Status status;
status = lm.minimizeInit(uv);
if (status == LevenbergMarquardtSpace::ImproperInputParameters) return;
}
EIGEN_DECLARE_TEST(sparseLM) {
CALL_SUBTEST_1(test_sparseLM_T<double>());
// CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
}