| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_BASIC_PRECONDITIONERS_H | 
 | #define EIGEN_BASIC_PRECONDITIONERS_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \brief A preconditioner based on the digonal entries | 
 |   * | 
 |   * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. | 
 |   * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: | 
 |   * \code | 
 |   * A.diagonal().asDiagonal() . x = b | 
 |   * \endcode | 
 |   * | 
 |   * \tparam _Scalar the type of the scalar. | 
 |   * | 
 |   * This preconditioner is suitable for both selfadjoint and general problems. | 
 |   * The diagonal entries are pre-inverted and stored into a dense vector. | 
 |   * | 
 |   * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. | 
 |   * | 
 |   */ | 
 | template <typename _Scalar> | 
 | class DiagonalPreconditioner | 
 | { | 
 |     typedef _Scalar Scalar; | 
 |     typedef Matrix<Scalar,Dynamic,1> Vector; | 
 |     typedef typename Vector::Index Index; | 
 |  | 
 |   public: | 
 |     // this typedef is only to export the scalar type and compile-time dimensions to solve_retval | 
 |     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; | 
 |  | 
 |     DiagonalPreconditioner() : m_isInitialized(false) {} | 
 |  | 
 |     template<typename MatType> | 
 |     explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) | 
 |     { | 
 |       compute(mat); | 
 |     } | 
 |  | 
 |     Index rows() const { return m_invdiag.size(); } | 
 |     Index cols() const { return m_invdiag.size(); } | 
 |      | 
 |     template<typename MatType> | 
 |     DiagonalPreconditioner& analyzePattern(const MatType& ) | 
 |     { | 
 |       return *this; | 
 |     } | 
 |      | 
 |     template<typename MatType> | 
 |     DiagonalPreconditioner& factorize(const MatType& mat) | 
 |     { | 
 |       m_invdiag.resize(mat.cols()); | 
 |       for(int j=0; j<mat.outerSize(); ++j) | 
 |       { | 
 |         typename MatType::InnerIterator it(mat,j); | 
 |         while(it && it.index()!=j) ++it; | 
 |         if(it && it.index()==j && it.value()!=Scalar(0)) | 
 |           m_invdiag(j) = Scalar(1)/it.value(); | 
 |         else | 
 |           m_invdiag(j) = Scalar(1); | 
 |       } | 
 |       m_isInitialized = true; | 
 |       return *this; | 
 |     } | 
 |      | 
 |     template<typename MatType> | 
 |     DiagonalPreconditioner& compute(const MatType& mat) | 
 |     { | 
 |       return factorize(mat); | 
 |     } | 
 |  | 
 |     /** \internal */ | 
 |     template<typename Rhs, typename Dest> | 
 |     void _solve_impl(const Rhs& b, Dest& x) const | 
 |     { | 
 |       x = m_invdiag.array() * b.array() ; | 
 |     } | 
 |  | 
 |     template<typename Rhs> inline const Solve<DiagonalPreconditioner, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); | 
 |       eigen_assert(m_invdiag.size()==b.rows() | 
 |                 && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); | 
 |       return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived()); | 
 |     } | 
 |  | 
 |   protected: | 
 |     Vector m_invdiag; | 
 |     bool m_isInitialized; | 
 | }; | 
 |  | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \brief A naive preconditioner which approximates any matrix as the identity matrix | 
 |   * | 
 |   * \sa class DiagonalPreconditioner | 
 |   */ | 
 | class IdentityPreconditioner | 
 | { | 
 |   public: | 
 |  | 
 |     IdentityPreconditioner() {} | 
 |  | 
 |     template<typename MatrixType> | 
 |     explicit IdentityPreconditioner(const MatrixType& ) {} | 
 |      | 
 |     template<typename MatrixType> | 
 |     IdentityPreconditioner& analyzePattern(const MatrixType& ) { return *this; } | 
 |      | 
 |     template<typename MatrixType> | 
 |     IdentityPreconditioner& factorize(const MatrixType& ) { return *this; } | 
 |  | 
 |     template<typename MatrixType> | 
 |     IdentityPreconditioner& compute(const MatrixType& ) { return *this; } | 
 |      | 
 |     template<typename Rhs> | 
 |     inline const Rhs& solve(const Rhs& b) const { return b; } | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_BASIC_PRECONDITIONERS_H |