| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_BICGSTAB_H | 
 | #define EIGEN_BICGSTAB_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |  | 
 | /** \internal Low-level bi conjugate gradient stabilized algorithm | 
 |   * \param mat The matrix A | 
 |   * \param rhs The right hand side vector b | 
 |   * \param x On input and initial solution, on output the computed solution. | 
 |   * \param precond A preconditioner being able to efficiently solve for an | 
 |   *                approximation of Ax=b (regardless of b) | 
 |   * \param iters On input the max number of iteration, on output the number of performed iterations. | 
 |   * \param tol_error On input the tolerance error, on output an estimation of the relative error. | 
 |   * \return false in the case of numerical issue, for example a break down of BiCGSTAB.  | 
 |   */ | 
 | template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> | 
 | bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x, | 
 |               const Preconditioner& precond, int& iters, | 
 |               typename Dest::RealScalar& tol_error) | 
 | { | 
 |   using std::sqrt; | 
 |   using std::abs; | 
 |   typedef typename Dest::RealScalar RealScalar; | 
 |   typedef typename Dest::Scalar Scalar; | 
 |   typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |   RealScalar tol = tol_error; | 
 |   int maxIters = iters; | 
 |  | 
 |   int n = mat.cols(); | 
 |   VectorType r  = rhs - mat * x; | 
 |   VectorType r0 = r; | 
 |    | 
 |   RealScalar r0_sqnorm = r0.squaredNorm(); | 
 |   RealScalar rhs_sqnorm = rhs.squaredNorm(); | 
 |   if(rhs_sqnorm == 0) | 
 |   { | 
 |     x.setZero(); | 
 |     return true; | 
 |   } | 
 |   Scalar rho    = 1; | 
 |   Scalar alpha  = 1; | 
 |   Scalar w      = 1; | 
 |    | 
 |   VectorType v = VectorType::Zero(n), p = VectorType::Zero(n); | 
 |   VectorType y(n),  z(n); | 
 |   VectorType kt(n), ks(n); | 
 |  | 
 |   VectorType s(n), t(n); | 
 |  | 
 |   RealScalar tol2 = tol*tol; | 
 |   RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon(); | 
 |   int i = 0; | 
 |   int restarts = 0; | 
 |  | 
 |   while ( r.squaredNorm()/rhs_sqnorm > tol2 && i<maxIters ) | 
 |   { | 
 |     Scalar rho_old = rho; | 
 |  | 
 |     rho = r0.dot(r); | 
 |     if (abs(rho) < eps2*r0_sqnorm) | 
 |     { | 
 |       // The new residual vector became too orthogonal to the arbitrarily choosen direction r0 | 
 |       // Let's restart with a new r0: | 
 |       r0 = r; | 
 |       rho = r0_sqnorm = r.squaredNorm(); | 
 |       if(restarts++ == 0) | 
 |         i = 0; | 
 |     } | 
 |     Scalar beta = (rho/rho_old) * (alpha / w); | 
 |     p = r + beta * (p - w * v); | 
 |      | 
 |     y = precond.solve(p); | 
 |      | 
 |     v.noalias() = mat * y; | 
 |  | 
 |     alpha = rho / r0.dot(v); | 
 |     s = r - alpha * v; | 
 |  | 
 |     z = precond.solve(s); | 
 |     t.noalias() = mat * z; | 
 |  | 
 |     RealScalar tmp = t.squaredNorm(); | 
 |     if(tmp>RealScalar(0)) | 
 |       w = t.dot(s) / tmp; | 
 |     else | 
 |       w = Scalar(0); | 
 |     x += alpha * y + w * z; | 
 |     r = s - w * t; | 
 |     ++i; | 
 |   } | 
 |   tol_error = sqrt(r.squaredNorm()/rhs_sqnorm); | 
 |   iters = i; | 
 |   return true;  | 
 | } | 
 |  | 
 | } | 
 |  | 
 | template< typename _MatrixType, | 
 |           typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > | 
 | class BiCGSTAB; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | struct traits<BiCGSTAB<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef _Preconditioner Preconditioner; | 
 | }; | 
 |  | 
 | } | 
 |  | 
 | /** \ingroup IterativeLinearSolvers_Module | 
 |   * \brief A bi conjugate gradient stabilized solver for sparse square problems | 
 |   * | 
 |   * This class allows to solve for A.x = b sparse linear problems using a bi conjugate gradient | 
 |   * stabilized algorithm. The vectors x and b can be either dense or sparse. | 
 |   * | 
 |   * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. | 
 |   * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner | 
 |   * | 
 |   * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() | 
 |   * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations | 
 |   * and NumTraits<Scalar>::epsilon() for the tolerance. | 
 |   *  | 
 |   * This class can be used as the direct solver classes. Here is a typical usage example: | 
 |   * \include BiCGSTAB_simple.cpp | 
 |   *  | 
 |   * By default the iterations start with x=0 as an initial guess of the solution. | 
 |   * One can control the start using the solveWithGuess() method. Here is a step by | 
 |   * step execution example starting with a random guess and printing the evolution | 
 |   * of the estimated error: | 
 |   * \include BiCGSTAB_step_by_step.cpp | 
 |   * Note that such a step by step execution is slightly slower. | 
 |   *  | 
 |   * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner | 
 |   */ | 
 | template< typename _MatrixType, typename _Preconditioner> | 
 | class BiCGSTAB : public IterativeSolverBase<BiCGSTAB<_MatrixType,_Preconditioner> > | 
 | { | 
 |   typedef IterativeSolverBase<BiCGSTAB> Base; | 
 |   using Base::mp_matrix; | 
 |   using Base::m_error; | 
 |   using Base::m_iterations; | 
 |   using Base::m_info; | 
 |   using Base::m_isInitialized; | 
 | public: | 
 |   typedef _MatrixType MatrixType; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   typedef _Preconditioner Preconditioner; | 
 |  | 
 | public: | 
 |  | 
 |   /** Default constructor. */ | 
 |   BiCGSTAB() : Base() {} | 
 |  | 
 |   /** Initialize the solver with matrix \a A for further \c Ax=b solving. | 
 |     *  | 
 |     * This constructor is a shortcut for the default constructor followed | 
 |     * by a call to compute(). | 
 |     *  | 
 |     * \warning this class stores a reference to the matrix A as well as some | 
 |     * precomputed values that depend on it. Therefore, if \a A is changed | 
 |     * this class becomes invalid. Call compute() to update it with the new | 
 |     * matrix A, or modify a copy of A. | 
 |     */ | 
 |   explicit BiCGSTAB(const MatrixType& A) : Base(A) {} | 
 |  | 
 |   ~BiCGSTAB() {} | 
 |  | 
 |   /** \internal */ | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_with_guess_impl(const Rhs& b, Dest& x) const | 
 |   {     | 
 |     bool failed = false; | 
 |     for(int j=0; j<b.cols(); ++j) | 
 |     { | 
 |       m_iterations = Base::maxIterations(); | 
 |       m_error = Base::m_tolerance; | 
 |        | 
 |       typename Dest::ColXpr xj(x,j); | 
 |       if(!internal::bicgstab(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_error)) | 
 |         failed = true; | 
 |     } | 
 |     m_info = failed ? NumericalIssue | 
 |            : m_error <= Base::m_tolerance ? Success | 
 |            : NoConvergence; | 
 |     m_isInitialized = true; | 
 |   } | 
 |  | 
 |   /** \internal */ | 
 |   using Base::_solve_impl; | 
 |   template<typename Rhs,typename Dest> | 
 |   void _solve_impl(const MatrixBase<Rhs>& b, Dest& x) const | 
 |   { | 
 |     // x.setZero(); | 
 |     x = b; | 
 |     _solve_with_guess_impl(b,x); | 
 |   } | 
 |  | 
 | protected: | 
 |  | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_BICGSTAB_H |