| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/MatrixFunctions> |
| |
| template<typename MatrixType> |
| void testMatrixExponential(const MatrixType& m) |
| { |
| typedef typename ei_traits<MatrixType>::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| const int rows = m.rows(); |
| const int cols = m.cols(); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| MatrixType A = MatrixType::Random(rows, cols); |
| MatrixType expA1, expA2; |
| ei_matrix_exponential(A, &expA1); |
| ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA2); |
| VERIFY_IS_APPROX(expA1, expA2); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testHyperbolicFunctions(const MatrixType& m) |
| { |
| const int rows = m.rows(); |
| const int cols = m.cols(); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| MatrixType A = MatrixType::Random(rows, cols); |
| MatrixType sinhA, coshA, expA; |
| ei_matrix_sinh(A, &sinhA); |
| ei_matrix_cosh(A, &coshA); |
| ei_matrix_exponential(A, &expA); |
| VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2); |
| VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testGonioFunctions(const MatrixType& m) |
| { |
| typedef ei_traits<MatrixType> Traits; |
| typedef typename Traits::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef std::complex<RealScalar> ComplexScalar; |
| typedef Matrix<ComplexScalar, Traits::RowsAtCompileTime, |
| Traits::ColsAtCompileTime, MatrixType::Options> ComplexMatrix; |
| |
| const int rows = m.rows(); |
| const int cols = m.cols(); |
| ComplexScalar imagUnit(0,1); |
| ComplexScalar two(2,0); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| MatrixType A = MatrixType::Random(rows, cols); |
| ComplexMatrix Ac = A.template cast<ComplexScalar>(); |
| |
| ComplexMatrix exp_iA; |
| ei_matrix_exponential(imagUnit * Ac, &exp_iA); |
| |
| MatrixType sinA; |
| ei_matrix_sin(A, &sinA); |
| ComplexMatrix sinAc = sinA.template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX(sinAc, (exp_iA - exp_iA.inverse()) / (two*imagUnit)); |
| |
| MatrixType cosA; |
| ei_matrix_cos(A, &cosA); |
| ComplexMatrix cosAc = cosA.template cast<ComplexScalar>(); |
| VERIFY_IS_APPROX(cosAc, (exp_iA + exp_iA.inverse()) / 2); |
| } |
| } |
| |
| template<typename MatrixType> |
| void testMatrixType(const MatrixType& m) |
| { |
| testMatrixExponential(m); |
| testHyperbolicFunctions(m); |
| testGonioFunctions(m); |
| } |
| |
| void test_matrix_function() |
| { |
| CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>())); |
| CALL_SUBTEST_2(testMatrixType(Matrix3cf())); |
| CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8))); |
| CALL_SUBTEST_4(testMatrixType(Matrix2d())); |
| CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>())); |
| CALL_SUBTEST_6(testMatrixType(Matrix4cd())); |
| CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13))); |
| } |