|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com) | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATHFUNCTIONSIMPL_H | 
|  | #define EIGEN_MATHFUNCTIONSIMPL_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal Fast reciprocal using Newton-Raphson's method. | 
|  |  | 
|  | Preconditions: | 
|  | 1. The starting guess provided in approx_a_recip must have at least half | 
|  | the leading mantissa bits in the correct result, such that a single | 
|  | Newton-Raphson step is sufficient to get within 1-2 ulps of the currect | 
|  | result. | 
|  | 2. If a is zero, approx_a_recip must be infinite with the same sign as a. | 
|  | 3. If a is infinite, approx_a_recip must be zero with the same sign as a. | 
|  |  | 
|  | If the preconditions are satisfied, which they are for for the _*_rcp_ps | 
|  | instructions on x86, the result has a maximum relative error of 2 ulps, | 
|  | and correctly handles reciprocals of zero, infinity, and NaN. | 
|  | */ | 
|  | template <typename Packet, int Steps> | 
|  | struct generic_reciprocal_newton_step { | 
|  | static_assert(Steps > 0, "Steps must be at least 1."); | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(const Packet& a, const Packet& approx_a_recip) { | 
|  | using Scalar = typename unpacket_traits<Packet>::type; | 
|  | const Packet two = pset1<Packet>(Scalar(2)); | 
|  | // Refine the approximation using one Newton-Raphson step: | 
|  | //   x_{i} = x_{i-1} * (2 - a * x_{i-1}) | 
|  | const Packet x = generic_reciprocal_newton_step<Packet, Steps - 1>::run(a, approx_a_recip); | 
|  | const Packet tmp = pnmadd(a, x, two); | 
|  | // If tmp is NaN, it means that a is either +/-0 or +/-Inf. | 
|  | // In this case return the approximation directly. | 
|  | const Packet is_not_nan = pcmp_eq(tmp, tmp); | 
|  | return pselect(is_not_nan, pmul(x, tmp), x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Packet> | 
|  | struct generic_reciprocal_newton_step<Packet, 0> { | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(const Packet& /*unused*/, const Packet& approx_rsqrt) { | 
|  | return approx_rsqrt; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal Fast reciprocal sqrt using Newton-Raphson's method. | 
|  |  | 
|  | Preconditions: | 
|  | 1. The starting guess provided in approx_a_recip must have at least half | 
|  | the leading mantissa bits in the correct result, such that a single | 
|  | Newton-Raphson step is sufficient to get within 1-2 ulps of the currect | 
|  | result. | 
|  | 2. If a is zero, approx_a_recip must be infinite with the same sign as a. | 
|  | 3. If a is infinite, approx_a_recip must be zero with the same sign as a. | 
|  |  | 
|  | If the preconditions are satisfied, which they are for for the _*_rcp_ps | 
|  | instructions on x86, the result has a maximum relative error of 2 ulps, | 
|  | and correctly handles zero, infinity, and NaN. Positive denormals are | 
|  | treated as zero. | 
|  | */ | 
|  | template <typename Packet, int Steps> | 
|  | struct generic_rsqrt_newton_step { | 
|  | static_assert(Steps > 0, "Steps must be at least 1."); | 
|  | using Scalar = typename unpacket_traits<Packet>::type; | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(const Packet& a, const Packet& approx_rsqrt) { | 
|  | constexpr Scalar kMinusHalf = Scalar(-1) / Scalar(2); | 
|  | const Packet cst_minus_half = pset1<Packet>(kMinusHalf); | 
|  | const Packet cst_minus_one = pset1<Packet>(Scalar(-1)); | 
|  |  | 
|  | Packet inv_sqrt = approx_rsqrt; | 
|  | for (int step = 0; step < Steps; ++step) { | 
|  | // Refine the approximation using one Newton-Raphson step: | 
|  | // h_n = (x * inv_sqrt) * inv_sqrt - 1 (so that h_n is nearly 0). | 
|  | // inv_sqrt = inv_sqrt - 0.5 * inv_sqrt * h_n | 
|  | Packet r2 = pmul(a, inv_sqrt); | 
|  | Packet half_r = pmul(inv_sqrt, cst_minus_half); | 
|  | Packet h_n = pmadd(r2, inv_sqrt, cst_minus_one); | 
|  | inv_sqrt = pmadd(half_r, h_n, inv_sqrt); | 
|  | } | 
|  |  | 
|  | // If x is NaN, then either: | 
|  | // 1) the input is NaN | 
|  | // 2) zero and infinity were multiplied | 
|  | // In either of these cases, return approx_rsqrt | 
|  | return pselect(pisnan(inv_sqrt), approx_rsqrt, inv_sqrt); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Packet> | 
|  | struct generic_rsqrt_newton_step<Packet, 0> { | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(const Packet& /*unused*/, const Packet& approx_rsqrt) { | 
|  | return approx_rsqrt; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /** \internal Fast sqrt using Newton-Raphson's method. | 
|  |  | 
|  | Preconditions: | 
|  | 1. The starting guess for the reciprocal sqrt provided in approx_rsqrt must | 
|  | have at least half the leading mantissa bits in the correct result, such | 
|  | that a single Newton-Raphson step is sufficient to get within 1-2 ulps of | 
|  | the currect result. | 
|  | 2. If a is zero, approx_rsqrt must be infinite. | 
|  | 3. If a is infinite, approx_rsqrt must be zero. | 
|  |  | 
|  | If the preconditions are satisfied, which they are for for the _*_rsqrt_ps | 
|  | instructions on x86, the result has a maximum relative error of 2 ulps, | 
|  | and correctly handles zero and infinity, and NaN. Positive denormal inputs | 
|  | are treated as zero. | 
|  | */ | 
|  | template <typename Packet, int Steps = 1> | 
|  | struct generic_sqrt_newton_step { | 
|  | static_assert(Steps > 0, "Steps must be at least 1."); | 
|  |  | 
|  | EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Packet run(const Packet& a, const Packet& approx_rsqrt) { | 
|  | using Scalar = typename unpacket_traits<Packet>::type; | 
|  | const Packet one_point_five = pset1<Packet>(Scalar(1.5)); | 
|  | const Packet minus_half = pset1<Packet>(Scalar(-0.5)); | 
|  | // If a is inf or zero, return a directly. | 
|  | const Packet inf_mask = pcmp_eq(a, pset1<Packet>(NumTraits<Scalar>::infinity())); | 
|  | const Packet return_a = por(pcmp_eq(a, pzero(a)), inf_mask); | 
|  | // Do a single step of Newton's iteration for reciprocal square root: | 
|  | //   x_{n+1} = x_n * (1.5 + (-0.5 * x_n) * (a * x_n))). | 
|  | // The Newton's step is computed this way to avoid over/under-flows. | 
|  | Packet rsqrt = pmul(approx_rsqrt, pmadd(pmul(minus_half, approx_rsqrt), pmul(a, approx_rsqrt), one_point_five)); | 
|  | for (int step = 1; step < Steps; ++step) { | 
|  | rsqrt = pmul(rsqrt, pmadd(pmul(minus_half, rsqrt), pmul(a, rsqrt), one_point_five)); | 
|  | } | 
|  |  | 
|  | // Return sqrt(x) = x * rsqrt(x) for non-zero finite positive arguments. | 
|  | // Return a itself for 0 or +inf, NaN for negative arguments. | 
|  | return pselect(return_a, a, pmul(a, rsqrt)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename RealScalar> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y) { | 
|  | // IEEE IEC 6059 special cases. | 
|  | if ((numext::isinf)(x) || (numext::isinf)(y)) return NumTraits<RealScalar>::infinity(); | 
|  | if ((numext::isnan)(x) || (numext::isnan)(y)) return NumTraits<RealScalar>::quiet_NaN(); | 
|  |  | 
|  | EIGEN_USING_STD(sqrt); | 
|  | RealScalar p, qp; | 
|  | p = numext::maxi(x, y); | 
|  | if (numext::is_exactly_zero(p)) return RealScalar(0); | 
|  | qp = numext::mini(y, x) / p; | 
|  | return p * sqrt(RealScalar(1) + qp * qp); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | struct hypot_impl { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | static EIGEN_DEVICE_FUNC inline RealScalar run(const Scalar& x, const Scalar& y) { | 
|  | EIGEN_USING_STD(abs); | 
|  | return positive_real_hypot<RealScalar>(abs(x), abs(y)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Generic complex sqrt implementation that correctly handles corner cases | 
|  | // according to https://en.cppreference.com/w/cpp/numeric/complex/sqrt | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& z) { | 
|  | // Computes the principal sqrt of the input. | 
|  | // | 
|  | // For a complex square root of the number x + i*y. We want to find real | 
|  | // numbers u and v such that | 
|  | //    (u + i*v)^2 = x + i*y  <=> | 
|  | //    u^2 - v^2 + i*2*u*v = x + i*v. | 
|  | // By equating the real and imaginary parts we get: | 
|  | //    u^2 - v^2 = x | 
|  | //    2*u*v = y. | 
|  | // | 
|  | // For x >= 0, this has the numerically stable solution | 
|  | //    u = sqrt(0.5 * (x + sqrt(x^2 + y^2))) | 
|  | //    v = y / (2 * u) | 
|  | // and for x < 0, | 
|  | //    v = sign(y) * sqrt(0.5 * (-x + sqrt(x^2 + y^2))) | 
|  | //    u = y / (2 * v) | 
|  | // | 
|  | // Letting w = sqrt(0.5 * (|x| + |z|)), | 
|  | //   if x == 0: u = w, v = sign(y) * w | 
|  | //   if x > 0:  u = w, v = y / (2 * w) | 
|  | //   if x < 0:  u = |y| / (2 * w), v = sign(y) * w | 
|  |  | 
|  | const T x = numext::real(z); | 
|  | const T y = numext::imag(z); | 
|  | const T zero = T(0); | 
|  | const T w = numext::sqrt(T(0.5) * (numext::abs(x) + numext::hypot(x, y))); | 
|  |  | 
|  | return (numext::isinf)(y)           ? std::complex<T>(NumTraits<T>::infinity(), y) | 
|  | : numext::is_exactly_zero(x) ? std::complex<T>(w, y < zero ? -w : w) | 
|  | : x > zero                   ? std::complex<T>(w, y / (2 * w)) | 
|  | : std::complex<T>(numext::abs(y) / (2 * w), y < zero ? -w : w); | 
|  | } | 
|  |  | 
|  | // Generic complex rsqrt implementation. | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& z) { | 
|  | // Computes the principal reciprocal sqrt of the input. | 
|  | // | 
|  | // For a complex reciprocal square root of the number z = x + i*y. We want to | 
|  | // find real numbers u and v such that | 
|  | //    (u + i*v)^2 = 1 / (x + i*y)  <=> | 
|  | //    u^2 - v^2 + i*2*u*v = x/|z|^2 - i*v/|z|^2. | 
|  | // By equating the real and imaginary parts we get: | 
|  | //    u^2 - v^2 = x/|z|^2 | 
|  | //    2*u*v = y/|z|^2. | 
|  | // | 
|  | // For x >= 0, this has the numerically stable solution | 
|  | //    u = sqrt(0.5 * (x + |z|)) / |z| | 
|  | //    v = -y / (2 * u * |z|) | 
|  | // and for x < 0, | 
|  | //    v = -sign(y) * sqrt(0.5 * (-x + |z|)) / |z| | 
|  | //    u = -y / (2 * v * |z|) | 
|  | // | 
|  | // Letting w = sqrt(0.5 * (|x| + |z|)), | 
|  | //   if x == 0: u = w / |z|, v = -sign(y) * w / |z| | 
|  | //   if x > 0:  u = w / |z|, v = -y / (2 * w * |z|) | 
|  | //   if x < 0:  u = |y| / (2 * w * |z|), v = -sign(y) * w / |z| | 
|  |  | 
|  | const T x = numext::real(z); | 
|  | const T y = numext::imag(z); | 
|  | const T zero = T(0); | 
|  |  | 
|  | const T abs_z = numext::hypot(x, y); | 
|  | const T w = numext::sqrt(T(0.5) * (numext::abs(x) + abs_z)); | 
|  | const T woz = w / abs_z; | 
|  | // Corner cases consistent with 1/sqrt(z) on gcc/clang. | 
|  | return numext::is_exactly_zero(abs_z) ? std::complex<T>(NumTraits<T>::infinity(), NumTraits<T>::quiet_NaN()) | 
|  | : ((numext::isinf)(x) || (numext::isinf)(y)) ? std::complex<T>(zero, zero) | 
|  | : numext::is_exactly_zero(x)                 ? std::complex<T>(woz, y < zero ? woz : -woz) | 
|  | : x > zero                                   ? std::complex<T>(woz, -y / (2 * w * abs_z)) | 
|  | : std::complex<T>(numext::abs(y) / (2 * w * abs_z), y < zero ? woz : -woz); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z) { | 
|  | // Computes complex log. | 
|  | T a = numext::abs(z); | 
|  | EIGEN_USING_STD(atan2); | 
|  | T b = atan2(z.imag(), z.real()); | 
|  | return std::complex<T>(numext::log(a), b); | 
|  | } | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_MATHFUNCTIONSIMPL_H |