|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_NUMTRAITS_H | 
|  | #define EIGEN_NUMTRAITS_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // default implementation of digits(), based on numeric_limits if specialized, | 
|  | // 0 for integer types, and log2(epsilon()) otherwise. | 
|  | template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, | 
|  | bool is_integer = NumTraits<T>::IsInteger> | 
|  | struct default_digits_impl { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits<T>::digits; } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_digits_impl<T, false, false>  // Floating point | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { | 
|  | using std::ceil; | 
|  | using std::log2; | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  | return int(ceil(-log2(NumTraits<Real>::epsilon()))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_digits_impl<T, false, true>  // Integer | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } | 
|  | }; | 
|  |  | 
|  | // default implementation of digits10(), based on numeric_limits if specialized, | 
|  | // 0 for integer types, and floor((digits()-1)*log10(2)) otherwise. | 
|  | template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, | 
|  | bool is_integer = NumTraits<T>::IsInteger> | 
|  | struct default_digits10_impl { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits<T>::digits10; } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_digits10_impl<T, false, false>  // Floating point | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { | 
|  | using std::floor; | 
|  | using std::log10; | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  | return int(floor((internal::default_digits_impl<Real>::run() - 1) * log10(2))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_digits10_impl<T, false, true>  // Integer | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } | 
|  | }; | 
|  |  | 
|  | // default implementation of max_digits10(), based on numeric_limits if specialized, | 
|  | // 0 for integer types, and log10(2) * digits() + 1 otherwise. | 
|  | template <typename T, bool use_numeric_limits = std::numeric_limits<T>::is_specialized, | 
|  | bool is_integer = NumTraits<T>::IsInteger> | 
|  | struct default_max_digits10_impl { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return std::numeric_limits<T>::max_digits10; } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_max_digits10_impl<T, false, false>  // Floating point | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { | 
|  | using std::ceil; | 
|  | using std::log10; | 
|  | typedef typename NumTraits<T>::Real Real; | 
|  | return int(ceil(internal::default_digits_impl<Real>::run() * log10(2) + 1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct default_max_digits10_impl<T, false, true>  // Integer | 
|  | { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static int run() { return 0; } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | namespace numext { | 
|  | /** \internal bit-wise cast without changing the underlying bit representation. */ | 
|  |  | 
|  | // TODO: Replace by std::bit_cast (available in C++20) | 
|  | template <typename Tgt, typename Src> | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Tgt bit_cast(const Src& src) { | 
|  | // The behaviour of memcpy is not specified for non-trivially copyable types | 
|  | EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Src>::value, THIS_TYPE_IS_NOT_SUPPORTED); | 
|  | EIGEN_STATIC_ASSERT(std::is_trivially_copyable<Tgt>::value && std::is_default_constructible<Tgt>::value, | 
|  | THIS_TYPE_IS_NOT_SUPPORTED); | 
|  | EIGEN_STATIC_ASSERT(sizeof(Src) == sizeof(Tgt), THIS_TYPE_IS_NOT_SUPPORTED); | 
|  |  | 
|  | Tgt tgt; | 
|  | // Load src into registers first. This allows the memcpy to be elided by CUDA. | 
|  | const Src staged = src; | 
|  | EIGEN_USING_STD(memcpy) | 
|  | memcpy(static_cast<void*>(&tgt), static_cast<const void*>(&staged), sizeof(Tgt)); | 
|  | return tgt; | 
|  | } | 
|  | }  // namespace numext | 
|  |  | 
|  | /** \class NumTraits | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen. | 
|  | * | 
|  | * \tparam T the numeric type at hand | 
|  | * | 
|  | * This class stores enums, typedefs and static methods giving information about a numeric type. | 
|  | * | 
|  | * The provided data consists of: | 
|  | * \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real, | 
|  | *     then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real | 
|  | *     is a typedef to \a U. | 
|  | * \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values, | 
|  | *     such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives | 
|  | *     \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to | 
|  | *     take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is | 
|  | *     only intended as a helper for code that needs to explicitly promote types. | 
|  | * \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c | 
|  | * std::complex<U>, Literal is defined as \c U. Of course, this type must be fully compatible with \a T. In doubt, just | 
|  | * use \a T here. \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you | 
|  | * don't know what this means, just use \a T here. \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c | 
|  | * std::complex type, and to 0 otherwise. \li An enum value \a IsInteger. It is equal to \c 1 if \a T is an integer type | 
|  | * such as \c int, and to \c 0 otherwise. \li Enum values ReadCost, AddCost and MulCost representing a rough estimate of | 
|  | * the number of CPU cycles needed to by move / add / mul instructions respectively, assuming the data is already stored | 
|  | * in CPU registers. Stay vague here. No need to do architecture-specific stuff. If you don't know what this means, just | 
|  | * use \c Eigen::HugeCost. \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T | 
|  | * is unsigned. \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type | 
|  | * \a T must be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 | 
|  | * otherwise. \li An epsilon() function which, unlike <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>, it returns a | 
|  | * \a Real instead of a \a T. \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a | 
|  | * default value by the fuzzy comparison operators. \li highest() and lowest() functions returning the highest and | 
|  | * lowest possible values respectively. \li digits() function returning the number of radix digits (non-sign digits for | 
|  | * integers, mantissa for floating-point). This is the analogue of <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits">std::numeric_limits<T>::digits</a> which is used | 
|  | * as the default implementation if specialized. \li digits10() function returning the number of decimal digits that can | 
|  | * be represented without change. This is the analogue of <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a> which is | 
|  | * used as the default implementation if specialized. \li max_digits10() function returning the number of decimal digits | 
|  | * required to uniquely represent all distinct values of the type. This is the analogue of <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_digits10">std::numeric_limits<T>::max_digits10</a> | 
|  | *     which is used as the default implementation if specialized. | 
|  | * \li min_exponent() and max_exponent() functions returning the highest and lowest possible values, respectively, | 
|  | *     such that the radix raised to the power exponent-1 is a normalized floating-point number.  These are equivalent | 
|  | * to <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/min_exponent">std::numeric_limits<T>::min_exponent</a>/ | 
|  | *     <a | 
|  | * href="http://en.cppreference.com/w/cpp/types/numeric_limits/max_exponent">std::numeric_limits<T>::max_exponent</a>. | 
|  | * \li infinity() function returning a representation of positive infinity, if available. | 
|  | * \li quiet_NaN function returning a non-signaling "not-a-number", if available. | 
|  | */ | 
|  |  | 
|  | template <typename T> | 
|  | struct GenericNumTraits { | 
|  | enum { | 
|  | IsInteger = std::numeric_limits<T>::is_integer, | 
|  | IsSigned = std::numeric_limits<T>::is_signed, | 
|  | IsComplex = 0, | 
|  | RequireInitialization = internal::is_arithmetic<T>::value ? 0 : 1, | 
|  | ReadCost = 1, | 
|  | AddCost = 1, | 
|  | MulCost = 1 | 
|  | }; | 
|  |  | 
|  | typedef T Real; | 
|  | typedef std::conditional_t<IsInteger, std::conditional_t<sizeof(T) <= 2, float, double>, T> NonInteger; | 
|  | typedef T Nested; | 
|  | typedef T Literal; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real epsilon() { return numext::numeric_limits<T>::epsilon(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits10() { return internal::default_digits10_impl<T>::run(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_digits10() { | 
|  | return internal::default_max_digits10_impl<T>::run(); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits() { return internal::default_digits_impl<T>::run(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int min_exponent() { return numext::numeric_limits<T>::min_exponent; } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_exponent() { return numext::numeric_limits<T>::max_exponent; } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real dummy_precision() { | 
|  | // make sure to override this for floating-point types | 
|  | return Real(0); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T highest() { return (numext::numeric_limits<T>::max)(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T lowest() { return (numext::numeric_limits<T>::lowest)(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T infinity() { return numext::numeric_limits<T>::infinity(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline T quiet_NaN() { return numext::numeric_limits<T>::quiet_NaN(); } | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | struct NumTraits : GenericNumTraits<T> {}; | 
|  |  | 
|  | template <> | 
|  | struct NumTraits<float> : GenericNumTraits<float> { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline float dummy_precision() { return 1e-5f; } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct NumTraits<double> : GenericNumTraits<double> { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline double dummy_precision() { return 1e-12; } | 
|  | }; | 
|  |  | 
|  | // GPU devices treat `long double` as `double`. | 
|  | #ifndef EIGEN_GPU_COMPILE_PHASE | 
|  | template <> | 
|  | struct NumTraits<long double> : GenericNumTraits<long double> { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline long double dummy_precision() { | 
|  | return static_cast<long double>(1e-15l); | 
|  | } | 
|  |  | 
|  | #if defined(EIGEN_ARCH_PPC) && (__LDBL_MANT_DIG__ == 106) | 
|  | // PowerPC double double causes issues with some values | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline long double epsilon() { | 
|  | // 2^(-(__LDBL_MANT_DIG__)+1) | 
|  | return static_cast<long double>(2.4651903288156618919116517665087e-32l); | 
|  | } | 
|  | #endif | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template <typename Real_> | 
|  | struct NumTraits<std::complex<Real_> > : GenericNumTraits<std::complex<Real_> > { | 
|  | typedef Real_ Real; | 
|  | typedef typename NumTraits<Real_>::Literal Literal; | 
|  | enum { | 
|  | IsComplex = 1, | 
|  | RequireInitialization = NumTraits<Real_>::RequireInitialization, | 
|  | ReadCost = 2 * NumTraits<Real_>::ReadCost, | 
|  | AddCost = 2 * NumTraits<Real>::AddCost, | 
|  | MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost | 
|  | }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real epsilon() { return NumTraits<Real>::epsilon(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int digits10() { return NumTraits<Real>::digits10(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline int max_digits10() { return NumTraits<Real>::max_digits10(); } | 
|  | }; | 
|  |  | 
|  | template <typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> | 
|  | struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > { | 
|  | typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> ArrayType; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Array<RealScalar, Rows, Cols, Options, MaxRows, MaxCols> Real; | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar; | 
|  | typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger; | 
|  | typedef ArrayType& Nested; | 
|  | typedef typename NumTraits<Scalar>::Literal Literal; | 
|  |  | 
|  | enum { | 
|  | IsComplex = NumTraits<Scalar>::IsComplex, | 
|  | IsInteger = NumTraits<Scalar>::IsInteger, | 
|  | IsSigned = NumTraits<Scalar>::IsSigned, | 
|  | RequireInitialization = 1, | 
|  | ReadCost = ArrayType::SizeAtCompileTime == Dynamic | 
|  | ? HugeCost | 
|  | : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::ReadCost), | 
|  | AddCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost | 
|  | : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::AddCost), | 
|  | MulCost = ArrayType::SizeAtCompileTime == Dynamic ? HugeCost | 
|  | : ArrayType::SizeAtCompileTime * int(NumTraits<Scalar>::MulCost) | 
|  | }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static inline RealScalar dummy_precision() { | 
|  | return NumTraits<RealScalar>::dummy_precision(); | 
|  | } | 
|  |  | 
|  | EIGEN_CONSTEXPR | 
|  | static inline int digits10() { return NumTraits<Scalar>::digits10(); } | 
|  | EIGEN_CONSTEXPR | 
|  | static inline int max_digits10() { return NumTraits<Scalar>::max_digits10(); } | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | struct NumTraits<std::string> : GenericNumTraits<std::string> { | 
|  | enum { RequireInitialization = 1, ReadCost = HugeCost, AddCost = HugeCost, MulCost = HugeCost }; | 
|  |  | 
|  | EIGEN_CONSTEXPR | 
|  | static inline int digits10() { return 0; } | 
|  | EIGEN_CONSTEXPR | 
|  | static inline int max_digits10() { return 0; } | 
|  |  | 
|  | private: | 
|  | static inline std::string epsilon(); | 
|  | static inline std::string dummy_precision(); | 
|  | static inline std::string lowest(); | 
|  | static inline std::string highest(); | 
|  | static inline std::string infinity(); | 
|  | static inline std::string quiet_NaN(); | 
|  | }; | 
|  |  | 
|  | // Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE. | 
|  | template <> | 
|  | struct NumTraits<void> {}; | 
|  |  | 
|  | template <> | 
|  | struct NumTraits<bool> : GenericNumTraits<bool> {}; | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_NUMTRAITS_H |