| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_REF_H | 
 | #define EIGEN_REF_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename PlainObjectType_, int Options_, typename StrideType_> | 
 | struct traits<Ref<PlainObjectType_, Options_, StrideType_> > | 
 |     : public traits<Map<PlainObjectType_, Options_, StrideType_> > { | 
 |   typedef PlainObjectType_ PlainObjectType; | 
 |   typedef StrideType_ StrideType; | 
 |   enum { | 
 |     Options = Options_, | 
 |     Flags = traits<Map<PlainObjectType_, Options_, StrideType_> >::Flags | NestByRefBit, | 
 |     Alignment = traits<Map<PlainObjectType_, Options_, StrideType_> >::Alignment, | 
 |     InnerStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::InnerStrideAtCompileTime, | 
 |     OuterStrideAtCompileTime = traits<Map<PlainObjectType_, Options_, StrideType_> >::OuterStrideAtCompileTime | 
 |   }; | 
 |  | 
 |   template <typename Derived> | 
 |   struct match { | 
 |     enum { | 
 |       IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime, | 
 |       HasDirectAccess = internal::has_direct_access<Derived>::ret, | 
 |       StorageOrderMatch = | 
 |           IsVectorAtCompileTime || ((PlainObjectType::Flags & RowMajorBit) == (Derived::Flags & RowMajorBit)), | 
 |       InnerStrideMatch = int(InnerStrideAtCompileTime) == int(Dynamic) || | 
 |                          int(InnerStrideAtCompileTime) == int(Derived::InnerStrideAtCompileTime) || | 
 |                          (int(InnerStrideAtCompileTime) == 0 && int(Derived::InnerStrideAtCompileTime) == 1), | 
 |       OuterStrideMatch = IsVectorAtCompileTime || int(OuterStrideAtCompileTime) == int(Dynamic) || | 
 |                          int(OuterStrideAtCompileTime) == int(Derived::OuterStrideAtCompileTime), | 
 |       // NOTE, this indirection of evaluator<Derived>::Alignment is needed | 
 |       // to workaround a very strange bug in MSVC related to the instantiation | 
 |       // of has_*ary_operator in evaluator<CwiseNullaryOp>. | 
 |       // This line is surprisingly very sensitive. For instance, simply adding parenthesis | 
 |       // as "DerivedAlignment = (int(evaluator<Derived>::Alignment))," will make MSVC fail... | 
 |       DerivedAlignment = int(evaluator<Derived>::Alignment), | 
 |       AlignmentMatch = (int(traits<PlainObjectType>::Alignment) == int(Unaligned)) || | 
 |                        (DerivedAlignment >= int(Alignment)),  // FIXME the first condition is not very clear, it should | 
 |                                                               // be replaced by the required alignment | 
 |       ScalarTypeMatch = internal::is_same<typename PlainObjectType::Scalar, typename Derived::Scalar>::value, | 
 |       MatchAtCompileTime = HasDirectAccess && StorageOrderMatch && InnerStrideMatch && OuterStrideMatch && | 
 |                            AlignmentMatch && ScalarTypeMatch | 
 |     }; | 
 |     typedef std::conditional_t<MatchAtCompileTime, internal::true_type, internal::false_type> type; | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename Derived> | 
 | struct traits<RefBase<Derived> > : public traits<Derived> {}; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <typename Derived> | 
 | class RefBase : public MapBase<Derived> { | 
 |   typedef typename internal::traits<Derived>::PlainObjectType PlainObjectType; | 
 |   typedef typename internal::traits<Derived>::StrideType StrideType; | 
 |  | 
 |  public: | 
 |   typedef MapBase<Derived> Base; | 
 |   EIGEN_DENSE_PUBLIC_INTERFACE(RefBase) | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index innerStride() const { | 
 |     return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR inline Index outerStride() const { | 
 |     return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer() | 
 |            : IsVectorAtCompileTime                   ? this->size() | 
 |            : int(Flags) & RowMajorBit                ? this->cols() | 
 |                                                      : this->rows(); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC RefBase() | 
 |       : Base(0, RowsAtCompileTime == Dynamic ? 0 : RowsAtCompileTime, | 
 |              ColsAtCompileTime == Dynamic ? 0 : ColsAtCompileTime), | 
 |         // Stride<> does not allow default ctor for Dynamic strides, so let' initialize it with dummy values: | 
 |         m_stride(StrideType::OuterStrideAtCompileTime == Dynamic ? 0 : StrideType::OuterStrideAtCompileTime, | 
 |                  StrideType::InnerStrideAtCompileTime == Dynamic ? 0 : StrideType::InnerStrideAtCompileTime) {} | 
 |  | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(RefBase) | 
 |  | 
 |  protected: | 
 |   typedef Stride<StrideType::OuterStrideAtCompileTime, StrideType::InnerStrideAtCompileTime> StrideBase; | 
 |  | 
 |   // Resolves inner stride if default 0. | 
 |   static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveInnerStride(Index inner) { return inner == 0 ? 1 : inner; } | 
 |  | 
 |   // Resolves outer stride if default 0. | 
 |   static EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index resolveOuterStride(Index inner, Index outer, Index rows, Index cols, | 
 |                                                                     bool isVectorAtCompileTime, bool isRowMajor) { | 
 |     return outer == 0 ? isVectorAtCompileTime ? inner * rows * cols : isRowMajor ? inner * cols : inner * rows : outer; | 
 |   } | 
 |  | 
 |   // Returns true if construction is valid, false if there is a stride mismatch, | 
 |   // and fails if there is a size mismatch. | 
 |   template <typename Expression> | 
 |   EIGEN_DEVICE_FUNC bool construct(Expression& expr) { | 
 |     // Check matrix sizes.  If this is a compile-time vector, we do allow | 
 |     // implicitly transposing. | 
 |     EIGEN_STATIC_ASSERT(EIGEN_PREDICATE_SAME_MATRIX_SIZE(PlainObjectType, Expression) | 
 |                             // If it is a vector, the transpose sizes might match. | 
 |                             || (PlainObjectType::IsVectorAtCompileTime && | 
 |                                 ((int(PlainObjectType::RowsAtCompileTime) == Eigen::Dynamic || | 
 |                                   int(Expression::ColsAtCompileTime) == Eigen::Dynamic || | 
 |                                   int(PlainObjectType::RowsAtCompileTime) == int(Expression::ColsAtCompileTime)) && | 
 |                                  (int(PlainObjectType::ColsAtCompileTime) == Eigen::Dynamic || | 
 |                                   int(Expression::RowsAtCompileTime) == Eigen::Dynamic || | 
 |                                   int(PlainObjectType::ColsAtCompileTime) == int(Expression::RowsAtCompileTime)))), | 
 |                         YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES) | 
 |  | 
 |     // Determine runtime rows and columns. | 
 |     Index rows = expr.rows(); | 
 |     Index cols = expr.cols(); | 
 |     if (PlainObjectType::RowsAtCompileTime == 1) { | 
 |       eigen_assert(expr.rows() == 1 || expr.cols() == 1); | 
 |       rows = 1; | 
 |       cols = expr.size(); | 
 |     } else if (PlainObjectType::ColsAtCompileTime == 1) { | 
 |       eigen_assert(expr.rows() == 1 || expr.cols() == 1); | 
 |       rows = expr.size(); | 
 |       cols = 1; | 
 |     } | 
 |     // Verify that the sizes are valid. | 
 |     eigen_assert((PlainObjectType::RowsAtCompileTime == Dynamic) || (PlainObjectType::RowsAtCompileTime == rows)); | 
 |     eigen_assert((PlainObjectType::ColsAtCompileTime == Dynamic) || (PlainObjectType::ColsAtCompileTime == cols)); | 
 |  | 
 |     // If this is a vector, we might be transposing, which means that stride should swap. | 
 |     const bool transpose = PlainObjectType::IsVectorAtCompileTime && (rows != expr.rows()); | 
 |     // If the storage format differs, we also need to swap the stride. | 
 |     const bool row_major = ((PlainObjectType::Flags)&RowMajorBit) != 0; | 
 |     const bool expr_row_major = (Expression::Flags & RowMajorBit) != 0; | 
 |     const bool storage_differs = (row_major != expr_row_major); | 
 |  | 
 |     const bool swap_stride = (transpose != storage_differs); | 
 |  | 
 |     // Determine expr's actual strides, resolving any defaults if zero. | 
 |     const Index expr_inner_actual = resolveInnerStride(expr.innerStride()); | 
 |     const Index expr_outer_actual = resolveOuterStride(expr_inner_actual, expr.outerStride(), expr.rows(), expr.cols(), | 
 |                                                        Expression::IsVectorAtCompileTime != 0, expr_row_major); | 
 |  | 
 |     // If this is a column-major row vector or row-major column vector, the inner-stride | 
 |     // is arbitrary, so set it to either the compile-time inner stride or 1. | 
 |     const bool row_vector = (rows == 1); | 
 |     const bool col_vector = (cols == 1); | 
 |     const Index inner_stride = | 
 |         ((!row_major && row_vector) || (row_major && col_vector)) | 
 |             ? (StrideType::InnerStrideAtCompileTime > 0 ? Index(StrideType::InnerStrideAtCompileTime) : 1) | 
 |         : swap_stride ? expr_outer_actual | 
 |                       : expr_inner_actual; | 
 |  | 
 |     // If this is a column-major column vector or row-major row vector, the outer-stride | 
 |     // is arbitrary, so set it to either the compile-time outer stride or vector size. | 
 |     const Index outer_stride = | 
 |         ((!row_major && col_vector) || (row_major && row_vector)) | 
 |             ? (StrideType::OuterStrideAtCompileTime > 0 ? Index(StrideType::OuterStrideAtCompileTime) | 
 |                                                         : rows * cols * inner_stride) | 
 |         : swap_stride ? expr_inner_actual | 
 |                       : expr_outer_actual; | 
 |  | 
 |     // Check if given inner/outer strides are compatible with compile-time strides. | 
 |     const bool inner_valid = (StrideType::InnerStrideAtCompileTime == Dynamic) || | 
 |                              (resolveInnerStride(Index(StrideType::InnerStrideAtCompileTime)) == inner_stride); | 
 |     if (!inner_valid) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     const bool outer_valid = | 
 |         (StrideType::OuterStrideAtCompileTime == Dynamic) || | 
 |         (resolveOuterStride(inner_stride, Index(StrideType::OuterStrideAtCompileTime), rows, cols, | 
 |                             PlainObjectType::IsVectorAtCompileTime != 0, row_major) == outer_stride); | 
 |     if (!outer_valid) { | 
 |       return false; | 
 |     } | 
 |  | 
 |     internal::construct_at<Base>(this, expr.data(), rows, cols); | 
 |     internal::construct_at(&m_stride, (StrideType::OuterStrideAtCompileTime == 0) ? 0 : outer_stride, | 
 |                            (StrideType::InnerStrideAtCompileTime == 0) ? 0 : inner_stride); | 
 |     return true; | 
 |   } | 
 |  | 
 |   StrideBase m_stride; | 
 | }; | 
 |  | 
 | /** \class Ref | 
 |  * \ingroup Core_Module | 
 |  * | 
 |  * \brief A matrix or vector expression mapping an existing expression | 
 |  * | 
 |  * \tparam PlainObjectType the equivalent matrix type of the mapped data | 
 |  * \tparam Options specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, | 
 |  * \c #Aligned16, \c #Aligned8 or \c #Unaligned. The default is \c #Unaligned. \tparam StrideType optionally specifies | 
 |  * strides. By default, Ref implies a contiguous storage along the inner dimension (inner stride==1), but accepts a | 
 |  * variable outer stride (leading dimension). This can be overridden by specifying strides. The type passed here must be | 
 |  * a specialization of the Stride template, see examples below. | 
 |  * | 
 |  * This class provides a way to write non-template functions taking Eigen objects as parameters while limiting the | 
 |  * number of copies. A Ref<> object can represent either a const expression or a l-value: \code | 
 |  * // in-out argument: | 
 |  * void foo1(Ref<VectorXf> x); | 
 |  * | 
 |  * // read-only const argument: | 
 |  * void foo2(const Ref<const VectorXf>& x); | 
 |  * \endcode | 
 |  * | 
 |  * In the in-out case, the input argument must satisfy the constraints of the actual Ref<> type, otherwise a compilation | 
 |  * issue will be triggered. By default, a Ref<VectorXf> can reference any dense vector expression of float having a | 
 |  * contiguous memory layout. Likewise, a Ref<MatrixXf> can reference any column-major dense matrix expression of float | 
 |  * whose column's elements are contiguously stored with the possibility to have a constant space in-between each column, | 
 |  * i.e. the inner stride must be equal to 1, but the outer stride (or leading dimension) can be greater than the number | 
 |  * of rows. | 
 |  * | 
 |  * In the const case, if the input expression does not match the above requirement, then it is evaluated into a | 
 |  * temporary before being passed to the function. Here are some examples: \code MatrixXf A; VectorXf a; foo1(a.head()); | 
 |  * // OK foo1(A.col());              // OK foo1(A.row());              // Compilation error because here innerstride!=1 | 
 |  * foo2(A.row());              // Compilation error because A.row() is a 1xN object while foo2 is expecting a Nx1 object | 
 |  * foo2(A.row().transpose());  // The row is copied into a contiguous temporary | 
 |  * foo2(2*a);                  // The expression is evaluated into a temporary | 
 |  * foo2(A.col().segment(2,4)); // No temporary | 
 |  * \endcode | 
 |  * | 
 |  * The range of inputs that can be referenced without temporary can be enlarged using the last two template parameters. | 
 |  * Here is an example accepting an innerstride!=1: | 
 |  * \code | 
 |  * // in-out argument: | 
 |  * void foo3(Ref<VectorXf,0,InnerStride<> > x); | 
 |  * foo3(A.row());              // OK | 
 |  * \endcode | 
 |  * The downside here is that the function foo3 might be significantly slower than foo1 because it won't be able to | 
 |  * exploit vectorization, and will involve more expensive address computations even if the input is contiguously stored | 
 |  * in memory. To overcome this issue, one might propose to overload internally calling a template function, e.g.: \code | 
 |  * // in the .h: | 
 |  * void foo(const Ref<MatrixXf>& A); | 
 |  * void foo(const Ref<MatrixXf,0,Stride<> >& A); | 
 |  * | 
 |  * // in the .cpp: | 
 |  * template<typename TypeOfA> void foo_impl(const TypeOfA& A) { | 
 |  *     ... // crazy code goes here | 
 |  * } | 
 |  * void foo(const Ref<MatrixXf>& A) { foo_impl(A); } | 
 |  * void foo(const Ref<MatrixXf,0,Stride<> >& A) { foo_impl(A); } | 
 |  * \endcode | 
 |  * | 
 |  * See also the following stackoverflow questions for further references: | 
 |  *  - <a href="http://stackoverflow.com/questions/21132538/correct-usage-of-the-eigenref-class">Correct usage of the | 
 |  * Eigen::Ref<> class</a> | 
 |  * | 
 |  * \sa PlainObjectBase::Map(), \ref TopicStorageOrders | 
 |  */ | 
 | template <typename PlainObjectType, int Options, typename StrideType> | 
 | class Ref : public RefBase<Ref<PlainObjectType, Options, StrideType> > { | 
 |  private: | 
 |   typedef internal::traits<Ref> Traits; | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC inline Ref( | 
 |       const PlainObjectBase<Derived>& expr, | 
 |       std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0); | 
 |  | 
 |  public: | 
 |   typedef RefBase<Ref> Base; | 
 |   EIGEN_DENSE_PUBLIC_INTERFACE(Ref) | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC inline Ref( | 
 |       PlainObjectBase<Derived>& expr, | 
 |       std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) { | 
 |     EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |     // Construction must pass since we will not create temporary storage in the non-const case. | 
 |     const bool success = Base::construct(expr.derived()); | 
 |     EIGEN_UNUSED_VARIABLE(success) | 
 |     eigen_assert(success); | 
 |   } | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC inline Ref( | 
 |       const DenseBase<Derived>& expr, | 
 |       std::enable_if_t<bool(Traits::template match<Derived>::MatchAtCompileTime), Derived>* = 0) | 
 | #else | 
 |   /** Implicit constructor from any dense expression */ | 
 |   template <typename Derived> | 
 |   inline Ref(DenseBase<Derived>& expr) | 
 | #endif | 
 |   { | 
 |     EIGEN_STATIC_ASSERT(bool(internal::is_lvalue<Derived>::value), THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); | 
 |     EIGEN_STATIC_ASSERT(bool(Traits::template match<Derived>::MatchAtCompileTime), STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |     EIGEN_STATIC_ASSERT(!Derived::IsPlainObjectBase, THIS_EXPRESSION_IS_NOT_A_LVALUE__IT_IS_READ_ONLY); | 
 |     // Construction must pass since we will not create temporary storage in the non-const case. | 
 |     const bool success = Base::construct(expr.const_cast_derived()); | 
 |     EIGEN_UNUSED_VARIABLE(success) | 
 |     eigen_assert(success); | 
 |   } | 
 |  | 
 |   EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Ref) | 
 | }; | 
 |  | 
 | // this is the const ref version | 
 | template <typename TPlainObjectType, int Options, typename StrideType> | 
 | class Ref<const TPlainObjectType, Options, StrideType> | 
 |     : public RefBase<Ref<const TPlainObjectType, Options, StrideType> > { | 
 |   typedef internal::traits<Ref> Traits; | 
 |  | 
 |   static constexpr bool may_map_m_object_successfully = | 
 |       (static_cast<int>(StrideType::InnerStrideAtCompileTime) == 0 || | 
 |        static_cast<int>(StrideType::InnerStrideAtCompileTime) == 1 || | 
 |        static_cast<int>(StrideType::InnerStrideAtCompileTime) == Dynamic) && | 
 |       (TPlainObjectType::IsVectorAtCompileTime || static_cast<int>(StrideType::OuterStrideAtCompileTime) == 0 || | 
 |        static_cast<int>(StrideType::OuterStrideAtCompileTime) == Dynamic || | 
 |        static_cast<int>(StrideType::OuterStrideAtCompileTime) == | 
 |            static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) || | 
 |        static_cast<int>(TPlainObjectType::InnerSizeAtCompileTime) == Dynamic); | 
 |  | 
 |  public: | 
 |   typedef RefBase<Ref> Base; | 
 |   EIGEN_DENSE_PUBLIC_INTERFACE(Ref) | 
 |  | 
 |   template <typename Derived> | 
 |   EIGEN_DEVICE_FUNC inline Ref(const DenseBase<Derived>& expr, | 
 |                                std::enable_if_t<bool(Traits::template match<Derived>::ScalarTypeMatch), Derived>* = 0) { | 
 |     //      std::cout << match_helper<Derived>::HasDirectAccess << "," << match_helper<Derived>::OuterStrideMatch << "," | 
 |     //      << match_helper<Derived>::InnerStrideMatch << "\n"; std::cout << int(StrideType::OuterStrideAtCompileTime) | 
 |     //      << " - " << int(Derived::OuterStrideAtCompileTime) << "\n"; std::cout << | 
 |     //      int(StrideType::InnerStrideAtCompileTime) << " - " << int(Derived::InnerStrideAtCompileTime) << "\n"; | 
 |     EIGEN_STATIC_ASSERT(Traits::template match<Derived>::type::value || may_map_m_object_successfully, | 
 |                         STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |     construct(expr.derived(), typename Traits::template match<Derived>::type()); | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Ref(const Ref& other) : Base(other) { | 
 |     // copy constructor shall not copy the m_object, to avoid unnecessary malloc and copy | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC inline Ref(Ref&& other) { | 
 |     if (other.data() == other.m_object.data()) { | 
 |       m_object = std::move(other.m_object); | 
 |       Base::construct(m_object); | 
 |     } else | 
 |       Base::construct(other); | 
 |   } | 
 |  | 
 |   template <typename OtherRef> | 
 |   EIGEN_DEVICE_FUNC inline Ref(const RefBase<OtherRef>& other) { | 
 |     EIGEN_STATIC_ASSERT(Traits::template match<OtherRef>::type::value || may_map_m_object_successfully, | 
 |                         STORAGE_LAYOUT_DOES_NOT_MATCH); | 
 |     construct(other.derived(), typename Traits::template match<OtherRef>::type()); | 
 |   } | 
 |  | 
 |  protected: | 
 |   template <typename Expression> | 
 |   EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::true_type) { | 
 |     // Check if we can use the underlying expr's storage directly, otherwise call the copy version. | 
 |     if (!Base::construct(expr)) { | 
 |       construct(expr, internal::false_type()); | 
 |     } | 
 |   } | 
 |  | 
 |   template <typename Expression> | 
 |   EIGEN_DEVICE_FUNC void construct(const Expression& expr, internal::false_type) { | 
 |     internal::call_assignment_no_alias(m_object, expr, internal::assign_op<Scalar, Scalar>()); | 
 |     const bool success = Base::construct(m_object); | 
 |     EIGEN_ONLY_USED_FOR_DEBUG(success) | 
 |     eigen_assert(success); | 
 |   } | 
 |  | 
 |  protected: | 
 |   TPlainObjectType m_object; | 
 | }; | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_REF_H |