| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_SELFADJOINTEIGENSOLVER_H | 
 | #define EIGEN_SELFADJOINTEIGENSOLVER_H | 
 |  | 
 | #include "./Tridiagonalization.h" | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename MatrixType_> | 
 | class GeneralizedSelfAdjointEigenSolver; | 
 |  | 
 | namespace internal { | 
 | template <typename SolverType, int Size, bool IsComplex> | 
 | struct direct_selfadjoint_eigenvalues; | 
 |  | 
 | template <typename MatrixType, typename DiagType, typename SubDiagType> | 
 | EIGEN_DEVICE_FUNC ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, | 
 |                                                               const Index maxIterations, bool computeEigenvectors, | 
 |                                                               MatrixType& eivec); | 
 | }  // namespace internal | 
 |  | 
 | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
 |  * | 
 |  * | 
 |  * \class SelfAdjointEigenSolver | 
 |  * | 
 |  * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices | 
 |  * | 
 |  * \tparam MatrixType_ the type of the matrix of which we are computing the | 
 |  * eigendecomposition; this is expected to be an instantiation of the Matrix | 
 |  * class template. | 
 |  * | 
 |  * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real | 
 |  * matrices, this means that the matrix is symmetric: it equals its | 
 |  * transpose. This class computes the eigenvalues and eigenvectors of a | 
 |  * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors | 
 |  * \f$ v \f$ such that \f$ Av = \lambda v \f$.  The eigenvalues of a | 
 |  * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with | 
 |  * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the | 
 |  * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$. This is called the | 
 |  * eigendecomposition. | 
 |  * | 
 |  * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal | 
 |  * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then | 
 |  * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is | 
 |  * equal to its transpose, \f$ V^{-1} = V^T \f$. | 
 |  * | 
 |  * The algorithm exploits the fact that the matrix is selfadjoint, making it | 
 |  * faster and more accurate than the general purpose eigenvalue algorithms | 
 |  * implemented in EigenSolver and ComplexEigenSolver. | 
 |  * | 
 |  * Only the \b lower \b triangular \b part of the input matrix is referenced. | 
 |  * | 
 |  * Call the function compute() to compute the eigenvalues and eigenvectors of | 
 |  * a given matrix. Alternatively, you can use the | 
 |  * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes | 
 |  * the eigenvalues and eigenvectors at construction time. Once the eigenvalue | 
 |  * and eigenvectors are computed, they can be retrieved with the eigenvalues() | 
 |  * and eigenvectors() functions. | 
 |  * | 
 |  * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) | 
 |  * contains an example of the typical use of this class. | 
 |  * | 
 |  * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and | 
 |  * the likes, see the class GeneralizedSelfAdjointEigenSolver. | 
 |  * | 
 |  * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver | 
 |  */ | 
 | template <typename MatrixType_> | 
 | class SelfAdjointEigenSolver { | 
 |  public: | 
 |   typedef MatrixType_ MatrixType; | 
 |   enum { | 
 |     Size = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |     Options = internal::traits<MatrixType>::Options, | 
 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
 |   }; | 
 |  | 
 |   /** \brief Scalar type for matrices of type \p MatrixType_. */ | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef Eigen::Index Index;  ///< \deprecated since Eigen 3.3 | 
 |  | 
 |   typedef Matrix<Scalar, Size, Size, ColMajor, MaxColsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; | 
 |  | 
 |   /** \brief Real scalar type for \p MatrixType_. | 
 |    * | 
 |    * This is just \c Scalar if #Scalar is real (e.g., \c float or | 
 |    * \c double), and the type of the real part of \c Scalar if #Scalar is | 
 |    * complex. | 
 |    */ | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver, Size, NumTraits<Scalar>::IsComplex>; | 
 |  | 
 |   /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
 |    * | 
 |    * This is a column vector with entries of type #RealScalar. | 
 |    * The length of the vector is the size of \p MatrixType_. | 
 |    */ | 
 |   typedef typename internal::plain_col_type<MatrixType, Scalar>::type VectorType; | 
 |   typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType; | 
 |   typedef Tridiagonalization<MatrixType> TridiagonalizationType; | 
 |   typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; | 
 |  | 
 |   /** \brief Default constructor for fixed-size matrices. | 
 |    * | 
 |    * The default constructor is useful in cases in which the user intends to | 
 |    * perform decompositions via compute(). This constructor | 
 |    * can only be used if \p MatrixType_ is a fixed-size matrix; use | 
 |    * SelfAdjointEigenSolver(Index) for dynamic-size matrices. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC SelfAdjointEigenSolver() | 
 |       : m_eivec(), | 
 |         m_workspace(), | 
 |         m_eivalues(), | 
 |         m_subdiag(), | 
 |         m_hcoeffs(), | 
 |         m_info(InvalidInput), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false) {} | 
 |  | 
 |   /** \brief Constructor, pre-allocates memory for dynamic-size matrices. | 
 |    * | 
 |    * \param [in]  size  Positive integer, size of the matrix whose | 
 |    * eigenvalues and eigenvectors will be computed. | 
 |    * | 
 |    * This constructor is useful for dynamic-size matrices, when the user | 
 |    * intends to perform decompositions via compute(). The \p size | 
 |    * parameter is only used as a hint. It is not an error to give a wrong | 
 |    * \p size, but it may impair performance. | 
 |    * | 
 |    * \sa compute() for an example | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolver(Index size) | 
 |       : m_eivec(size, size), | 
 |         m_workspace(size), | 
 |         m_eivalues(size), | 
 |         m_subdiag(size > 1 ? size - 1 : 1), | 
 |         m_hcoeffs(size > 1 ? size - 1 : 1), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false) {} | 
 |  | 
 |   /** \brief Constructor; computes eigendecomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
 |    *    be computed. Only the lower triangular part of the matrix is referenced. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * | 
 |    * This constructor calls compute(const MatrixType&, int) to compute the | 
 |    * eigenvalues of the matrix \p matrix. The eigenvectors are computed if | 
 |    * \p options equals #ComputeEigenvectors. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out | 
 |    * | 
 |    * \sa compute(const MatrixType&, int) | 
 |    */ | 
 |   template <typename InputType> | 
 |   EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix, | 
 |                                                     int options = ComputeEigenvectors) | 
 |       : m_eivec(matrix.rows(), matrix.cols()), | 
 |         m_workspace(matrix.cols()), | 
 |         m_eivalues(matrix.cols()), | 
 |         m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), | 
 |         m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1), | 
 |         m_isInitialized(false), | 
 |         m_eigenvectorsOk(false) { | 
 |     compute(matrix.derived(), options); | 
 |   } | 
 |  | 
 |   /** \brief Computes eigendecomposition of given matrix. | 
 |    * | 
 |    * \param[in]  matrix  Selfadjoint matrix whose eigendecomposition is to | 
 |    *    be computed. Only the lower triangular part of the matrix is referenced. | 
 |    * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \returns    Reference to \c *this | 
 |    * | 
 |    * This function computes the eigenvalues of \p matrix.  The eigenvalues() | 
 |    * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors, | 
 |    * then the eigenvectors are also computed and can be retrieved by | 
 |    * calling eigenvectors(). | 
 |    * | 
 |    * This implementation uses a symmetric QR algorithm. The matrix is first | 
 |    * reduced to tridiagonal form using the Tridiagonalization class. The | 
 |    * tridiagonal matrix is then brought to diagonal form with implicit | 
 |    * symmetric QR steps with Wilkinson shift. Details can be found in | 
 |    * Section 8.3 of Golub \& Van Loan, <i>%Matrix Computations</i>. | 
 |    * | 
 |    * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors | 
 |    * are required and \f$ 4n^3/3 \f$ if they are not required. | 
 |    * | 
 |    * This method reuses the memory in the SelfAdjointEigenSolver object that | 
 |    * was allocated when the object was constructed, if the size of the | 
 |    * matrix does not change. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out | 
 |    * | 
 |    * \sa SelfAdjointEigenSolver(const MatrixType&, int) | 
 |    */ | 
 |   template <typename InputType> | 
 |   EIGEN_DEVICE_FUNC SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix, | 
 |                                                     int options = ComputeEigenvectors); | 
 |  | 
 |   /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm | 
 |    * | 
 |    * This is a variant of compute(const MatrixType&, int options) which | 
 |    * directly solves the underlying polynomial equation. | 
 |    * | 
 |    * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). | 
 |    * | 
 |    * This method is usually significantly faster than the QR iterative algorithm | 
 |    * but it might also be less accurate. It is also worth noting that | 
 |    * for 3x3 matrices it involves trigonometric operations which are | 
 |    * not necessarily available for all scalar types. | 
 |    * | 
 |    * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: | 
 |    *   - double: 1e-8 | 
 |    *   - float:  1e-3 | 
 |    * | 
 |    * \sa compute(const MatrixType&, int options) | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); | 
 |  | 
 |   /** | 
 |    *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix | 
 |    * | 
 |    * \param[in] diag The vector containing the diagonal of the matrix. | 
 |    * \param[in] subdiag The subdiagonal of the matrix. | 
 |    * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. | 
 |    * \returns Reference to \c *this | 
 |    * | 
 |    * This function assumes that the matrix has been reduced to tridiagonal form. | 
 |    * | 
 |    * \sa compute(const MatrixType&, int) for more information | 
 |    */ | 
 |   SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag, | 
 |                                                  int options = ComputeEigenvectors); | 
 |  | 
 |   /** \brief Returns the eigenvectors of given matrix. | 
 |    * | 
 |    * \returns  A const reference to the matrix whose columns are the eigenvectors. | 
 |    * | 
 |    * \pre The eigenvectors have been computed before. | 
 |    * | 
 |    * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
 |    * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
 |    * eigenvectors are normalized to have (Euclidean) norm equal to one. If | 
 |    * this object was used to solve the eigenproblem for the selfadjoint | 
 |    * matrix \f$ A \f$, then the matrix returned by this function is the | 
 |    * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. | 
 |    * | 
 |    * For a selfadjoint matrix, \f$ V \f$ is unitary, meaning its inverse is equal | 
 |    * to its adjoint, \f$ V^{-1} = V^{\dagger} \f$. If \f$ A \f$ is real, then | 
 |    * \f$ V \f$ is also real and therefore orthogonal, meaning its inverse is | 
 |    * equal to its transpose, \f$ V^{-1} = V^T \f$. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out | 
 |    * | 
 |    * \sa eigenvalues() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC const EigenvectorsType& eigenvectors() const { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec; | 
 |   } | 
 |  | 
 |   /** \brief Returns the eigenvalues of given matrix. | 
 |    * | 
 |    * \returns A const reference to the column vector containing the eigenvalues. | 
 |    * | 
 |    * \pre The eigenvalues have been computed before. | 
 |    * | 
 |    * The eigenvalues are repeated according to their algebraic multiplicity, | 
 |    * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
 |    * are sorted in increasing order. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out | 
 |    * | 
 |    * \sa eigenvectors(), MatrixBase::eigenvalues() | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC const RealVectorType& eigenvalues() const { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     return m_eivalues; | 
 |   } | 
 |  | 
 |   /** \brief Computes the positive-definite square root of the matrix. | 
 |    * | 
 |    * \returns the positive-definite square root of the matrix | 
 |    * | 
 |    * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
 |    * have been computed before. | 
 |    * | 
 |    * The square root of a positive-definite matrix \f$ A \f$ is the | 
 |    * positive-definite matrix whose square equals \f$ A \f$. This function | 
 |    * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the | 
 |    * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out | 
 |    * | 
 |    * \sa operatorInverseSqrt(), <a href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a> | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC MatrixType operatorSqrt() const { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
 |   } | 
 |  | 
 |   /** \brief Computes the inverse square root of the matrix. | 
 |    * | 
 |    * \returns the inverse positive-definite square root of the matrix | 
 |    * | 
 |    * \pre The eigenvalues and eigenvectors of a positive-definite matrix | 
 |    * have been computed before. | 
 |    * | 
 |    * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to | 
 |    * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is | 
 |    * cheaper than first computing the square root with operatorSqrt() and | 
 |    * then its inverse with MatrixBase::inverse(). | 
 |    * | 
 |    * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp | 
 |    * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out | 
 |    * | 
 |    * \sa operatorSqrt(), MatrixBase::inverse(), <a | 
 |    * href="unsupported/group__MatrixFunctions__Module.html">MatrixFunctions Module</a> | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC MatrixType operatorInverseSqrt() const { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
 |     return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); | 
 |   } | 
 |  | 
 |   /** \brief Reports whether previous computation was successful. | 
 |    * | 
 |    * \returns \c Success if computation was successful, \c NoConvergence otherwise. | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC ComputationInfo info() const { | 
 |     eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); | 
 |     return m_info; | 
 |   } | 
 |  | 
 |   /** \brief Maximum number of iterations. | 
 |    * | 
 |    * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n | 
 |    * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). | 
 |    */ | 
 |   static const int m_maxIterations = 30; | 
 |  | 
 |  protected: | 
 |   EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
 |  | 
 |   EigenvectorsType m_eivec; | 
 |   VectorType m_workspace; | 
 |   RealVectorType m_eivalues; | 
 |   typename TridiagonalizationType::SubDiagonalType m_subdiag; | 
 |   typename TridiagonalizationType::CoeffVectorType m_hcoeffs; | 
 |   ComputationInfo m_info; | 
 |   bool m_isInitialized; | 
 |   bool m_eigenvectorsOk; | 
 | }; | 
 |  | 
 | namespace internal { | 
 | /** \internal | 
 |  * | 
 |  * \eigenvalues_module \ingroup Eigenvalues_Module | 
 |  * | 
 |  * Performs a QR step on a tridiagonal symmetric matrix represented as a | 
 |  * pair of two vectors \a diag and \a subdiag. | 
 |  * | 
 |  * \param diag the diagonal part of the input selfadjoint tridiagonal matrix | 
 |  * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix | 
 |  * \param start starting index of the submatrix to work on | 
 |  * \param end last+1 index of the submatrix to work on | 
 |  * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 | 
 |  * \param n size of the input matrix | 
 |  * | 
 |  * For compilation efficiency reasons, this procedure does not use eigen expression | 
 |  * for its arguments. | 
 |  * | 
 |  * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: | 
 |  * "implicit symmetric QR step with Wilkinson shift" | 
 |  */ | 
 | template <int StorageOrder, typename RealScalar, typename Scalar, typename Index> | 
 | EIGEN_DEVICE_FUNC static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, | 
 |                                                   Scalar* matrixQ, Index n); | 
 | }  // namespace internal | 
 |  | 
 | template <typename MatrixType> | 
 | template <typename InputType> | 
 | EIGEN_DEVICE_FUNC SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute( | 
 |     const EigenBase<InputType>& a_matrix, int options) { | 
 |   const InputType& matrix(a_matrix.derived()); | 
 |  | 
 |   EIGEN_USING_STD(abs); | 
 |   eigen_assert(matrix.cols() == matrix.rows()); | 
 |   eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask && | 
 |                "invalid option parameter"); | 
 |   bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
 |   Index n = matrix.cols(); | 
 |   m_eivalues.resize(n, 1); | 
 |  | 
 |   if (n == 1) { | 
 |     m_eivec = matrix; | 
 |     m_eivalues.coeffRef(0, 0) = numext::real(m_eivec.coeff(0, 0)); | 
 |     if (computeEigenvectors) m_eivec.setOnes(n, n); | 
 |     m_info = Success; | 
 |     m_isInitialized = true; | 
 |     m_eigenvectorsOk = computeEigenvectors; | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // declare some aliases | 
 |   RealVectorType& diag = m_eivalues; | 
 |   EigenvectorsType& mat = m_eivec; | 
 |  | 
 |   // map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
 |   mat = matrix.template triangularView<Lower>(); | 
 |   RealScalar scale = mat.cwiseAbs().maxCoeff(); | 
 |   if (numext::is_exactly_zero(scale)) scale = RealScalar(1); | 
 |   mat.template triangularView<Lower>() /= scale; | 
 |   m_subdiag.resize(n - 1); | 
 |   m_hcoeffs.resize(n - 1); | 
 |   internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, m_workspace, computeEigenvectors); | 
 |  | 
 |   m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | 
 |  | 
 |   // scale back the eigen values | 
 |   m_eivalues *= scale; | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_eigenvectorsOk = computeEigenvectors; | 
 |   return *this; | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::computeFromTridiagonal( | 
 |     const RealVectorType& diag, const SubDiagonalType& subdiag, int options) { | 
 |   // TODO : Add an option to scale the values beforehand | 
 |   bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
 |  | 
 |   m_eivalues = diag; | 
 |   m_subdiag = subdiag; | 
 |   if (computeEigenvectors) { | 
 |     m_eivec.setIdentity(diag.size(), diag.size()); | 
 |   } | 
 |   m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); | 
 |  | 
 |   m_isInitialized = true; | 
 |   m_eigenvectorsOk = computeEigenvectors; | 
 |   return *this; | 
 | } | 
 |  | 
 | namespace internal { | 
 | /** | 
 |  * \internal | 
 |  * \brief Compute the eigendecomposition from a tridiagonal matrix | 
 |  * | 
 |  * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues | 
 |  * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) | 
 |  * \param[in] maxIterations : the maximum number of iterations | 
 |  * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not | 
 |  * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. | 
 |  * \returns \c Success or \c NoConvergence | 
 |  */ | 
 | template <typename MatrixType, typename DiagType, typename SubDiagType> | 
 | EIGEN_DEVICE_FUNC ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag, | 
 |                                                               const Index maxIterations, bool computeEigenvectors, | 
 |                                                               MatrixType& eivec) { | 
 |   ComputationInfo info; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index n = diag.size(); | 
 |   Index end = n - 1; | 
 |   Index start = 0; | 
 |   Index iter = 0;  // total number of iterations | 
 |  | 
 |   typedef typename DiagType::RealScalar RealScalar; | 
 |   const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); | 
 |   const RealScalar precision_inv = RealScalar(1) / NumTraits<RealScalar>::epsilon(); | 
 |   while (end > 0) { | 
 |     for (Index i = start; i < end; ++i) { | 
 |       if (numext::abs(subdiag[i]) < considerAsZero) { | 
 |         subdiag[i] = RealScalar(0); | 
 |       } else { | 
 |         // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1])) | 
 |         // Scaled to prevent underflows. | 
 |         const RealScalar scaled_subdiag = precision_inv * subdiag[i]; | 
 |         if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i]) + numext::abs(diag[i + 1]))) { | 
 |           subdiag[i] = RealScalar(0); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // find the largest unreduced block at the end of the matrix. | 
 |     while (end > 0 && numext::is_exactly_zero(subdiag[end - 1])) { | 
 |       end--; | 
 |     } | 
 |     if (end <= 0) break; | 
 |  | 
 |     // if we spent too many iterations, we give up | 
 |     iter++; | 
 |     if (iter > maxIterations * n) break; | 
 |  | 
 |     start = end - 1; | 
 |     while (start > 0 && !numext::is_exactly_zero(subdiag[start - 1])) start--; | 
 |  | 
 |     internal::tridiagonal_qr_step<MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor>( | 
 |         diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); | 
 |   } | 
 |   if (iter <= maxIterations * n) | 
 |     info = Success; | 
 |   else | 
 |     info = NoConvergence; | 
 |  | 
 |   // Sort eigenvalues and corresponding vectors. | 
 |   // TODO make the sort optional ? | 
 |   // TODO use a better sort algorithm !! | 
 |   if (info == Success) { | 
 |     for (Index i = 0; i < n - 1; ++i) { | 
 |       Index k; | 
 |       diag.segment(i, n - i).minCoeff(&k); | 
 |       if (k > 0) { | 
 |         numext::swap(diag[i], diag[k + i]); | 
 |         if (computeEigenvectors) eivec.col(i).swap(eivec.col(k + i)); | 
 |       } | 
 |     } | 
 |   } | 
 |   return info; | 
 | } | 
 |  | 
 | template <typename SolverType, int Size, bool IsComplex> | 
 | struct direct_selfadjoint_eigenvalues { | 
 |   EIGEN_DEVICE_FUNC static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) { | 
 |     eig.compute(A, options); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename SolverType> | 
 | struct direct_selfadjoint_eigenvalues<SolverType, 3, false> { | 
 |   typedef typename SolverType::MatrixType MatrixType; | 
 |   typedef typename SolverType::RealVectorType VectorType; | 
 |   typedef typename SolverType::Scalar Scalar; | 
 |   typedef typename SolverType::EigenvectorsType EigenvectorsType; | 
 |  | 
 |   /** \internal | 
 |    * Computes the roots of the characteristic polynomial of \a m. | 
 |    * For numerical stability m.trace() should be near zero and to avoid over- or underflow m should be normalized. | 
 |    */ | 
 |   EIGEN_DEVICE_FUNC static inline void computeRoots(const MatrixType& m, VectorType& roots) { | 
 |     EIGEN_USING_STD(sqrt) | 
 |     EIGEN_USING_STD(atan2) | 
 |     EIGEN_USING_STD(cos) | 
 |     EIGEN_USING_STD(sin) | 
 |     const Scalar s_inv3 = Scalar(1) / Scalar(3); | 
 |     const Scalar s_sqrt3 = sqrt(Scalar(3)); | 
 |  | 
 |     // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0.  The | 
 |     // eigenvalues are the roots to this equation, all guaranteed to be | 
 |     // real-valued, because the matrix is symmetric. | 
 |     Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) + Scalar(2) * m(1, 0) * m(2, 0) * m(2, 1) - m(0, 0) * m(2, 1) * m(2, 1) - | 
 |                 m(1, 1) * m(2, 0) * m(2, 0) - m(2, 2) * m(1, 0) * m(1, 0); | 
 |     Scalar c1 = m(0, 0) * m(1, 1) - m(1, 0) * m(1, 0) + m(0, 0) * m(2, 2) - m(2, 0) * m(2, 0) + m(1, 1) * m(2, 2) - | 
 |                 m(2, 1) * m(2, 1); | 
 |     Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2); | 
 |  | 
 |     // Construct the parameters used in classifying the roots of the equation | 
 |     // and in solving the equation for the roots in closed form. | 
 |     Scalar c2_over_3 = c2 * s_inv3; | 
 |     Scalar a_over_3 = (c2 * c2_over_3 - c1) * s_inv3; | 
 |     a_over_3 = numext::maxi(a_over_3, Scalar(0)); | 
 |  | 
 |     Scalar half_b = Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1)); | 
 |  | 
 |     Scalar q = a_over_3 * a_over_3 * a_over_3 - half_b * half_b; | 
 |     q = numext::maxi(q, Scalar(0)); | 
 |  | 
 |     // Compute the eigenvalues by solving for the roots of the polynomial. | 
 |     Scalar rho = sqrt(a_over_3); | 
 |     Scalar theta = atan2(sqrt(q), half_b) * s_inv3;  // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3] | 
 |     Scalar cos_theta = cos(theta); | 
 |     Scalar sin_theta = sin(theta); | 
 |     // roots are already sorted, since cos is monotonically decreasing on [0, pi] | 
 |     roots(0) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta);  // == 2*rho*cos(theta+2pi/3) | 
 |     roots(1) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta);  // == 2*rho*cos(theta+ pi/3) | 
 |     roots(2) = c2_over_3 + Scalar(2) * rho * cos_theta; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res, | 
 |                                                       Ref<VectorType> representative) { | 
 |     EIGEN_USING_STD(abs); | 
 |     EIGEN_USING_STD(sqrt); | 
 |     Index i0; | 
 |     // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal): | 
 |     mat.diagonal().cwiseAbs().maxCoeff(&i0); | 
 |     // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector, | 
 |     // so let's save it: | 
 |     representative = mat.col(i0); | 
 |     Scalar n0, n1; | 
 |     VectorType c0, c1; | 
 |     n0 = (c0 = representative.cross(mat.col((i0 + 1) % 3))).squaredNorm(); | 
 |     n1 = (c1 = representative.cross(mat.col((i0 + 2) % 3))).squaredNorm(); | 
 |     if (n0 > n1) | 
 |       res = c0 / sqrt(n0); | 
 |     else | 
 |       res = c1 / sqrt(n1); | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline void run(SolverType& solver, const MatrixType& mat, int options) { | 
 |     eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows()); | 
 |     eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask && | 
 |                  "invalid option parameter"); | 
 |     bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
 |  | 
 |     EigenvectorsType& eivecs = solver.m_eivec; | 
 |     VectorType& eivals = solver.m_eivalues; | 
 |  | 
 |     // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
 |     Scalar shift = mat.trace() / Scalar(3); | 
 |     // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for | 
 |     // computing the eigenvectors later | 
 |     MatrixType scaledMat = mat.template selfadjointView<Lower>(); | 
 |     scaledMat.diagonal().array() -= shift; | 
 |     Scalar scale = scaledMat.cwiseAbs().maxCoeff(); | 
 |     if (scale > 0) scaledMat /= scale;  // TODO for scale==0 we could save the remaining operations | 
 |  | 
 |     // compute the eigenvalues | 
 |     computeRoots(scaledMat, eivals); | 
 |  | 
 |     // compute the eigenvectors | 
 |     if (computeEigenvectors) { | 
 |       if ((eivals(2) - eivals(0)) <= Eigen::NumTraits<Scalar>::epsilon()) { | 
 |         // All three eigenvalues are numerically the same | 
 |         eivecs.setIdentity(); | 
 |       } else { | 
 |         MatrixType tmp; | 
 |         tmp = scaledMat; | 
 |  | 
 |         // Compute the eigenvector of the most distinct eigenvalue | 
 |         Scalar d0 = eivals(2) - eivals(1); | 
 |         Scalar d1 = eivals(1) - eivals(0); | 
 |         Index k(0), l(2); | 
 |         if (d0 > d1) { | 
 |           numext::swap(k, l); | 
 |           d0 = d1; | 
 |         } | 
 |  | 
 |         // Compute the eigenvector of index k | 
 |         { | 
 |           tmp.diagonal().array() -= eivals(k); | 
 |           // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector. | 
 |           extract_kernel(tmp, eivecs.col(k), eivecs.col(l)); | 
 |         } | 
 |  | 
 |         // Compute eigenvector of index l | 
 |         if (d0 <= 2 * Eigen::NumTraits<Scalar>::epsilon() * d1) { | 
 |           // If d0 is too small, then the two other eigenvalues are numerically the same, | 
 |           // and thus we only have to ortho-normalize the near orthogonal vector we saved above. | 
 |           eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l)) * eivecs.col(l); | 
 |           eivecs.col(l).normalize(); | 
 |         } else { | 
 |           tmp = scaledMat; | 
 |           tmp.diagonal().array() -= eivals(l); | 
 |  | 
 |           VectorType dummy; | 
 |           extract_kernel(tmp, eivecs.col(l), dummy); | 
 |         } | 
 |  | 
 |         // Compute last eigenvector from the other two | 
 |         eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Rescale back to the original size. | 
 |     eivals *= scale; | 
 |     eivals.array() += shift; | 
 |  | 
 |     solver.m_info = Success; | 
 |     solver.m_isInitialized = true; | 
 |     solver.m_eigenvectorsOk = computeEigenvectors; | 
 |   } | 
 | }; | 
 |  | 
 | // 2x2 direct eigenvalues decomposition, code from Hauke Heibel | 
 | template <typename SolverType> | 
 | struct direct_selfadjoint_eigenvalues<SolverType, 2, false> { | 
 |   typedef typename SolverType::MatrixType MatrixType; | 
 |   typedef typename SolverType::RealVectorType VectorType; | 
 |   typedef typename SolverType::Scalar Scalar; | 
 |   typedef typename SolverType::EigenvectorsType EigenvectorsType; | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline void computeRoots(const MatrixType& m, VectorType& roots) { | 
 |     EIGEN_USING_STD(sqrt); | 
 |     const Scalar t0 = Scalar(0.5) * sqrt(numext::abs2(m(0, 0) - m(1, 1)) + Scalar(4) * numext::abs2(m(1, 0))); | 
 |     const Scalar t1 = Scalar(0.5) * (m(0, 0) + m(1, 1)); | 
 |     roots(0) = t1 - t0; | 
 |     roots(1) = t1 + t0; | 
 |   } | 
 |  | 
 |   EIGEN_DEVICE_FUNC static inline void run(SolverType& solver, const MatrixType& mat, int options) { | 
 |     EIGEN_USING_STD(sqrt); | 
 |     EIGEN_USING_STD(abs); | 
 |  | 
 |     eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows()); | 
 |     eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask && | 
 |                  "invalid option parameter"); | 
 |     bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors; | 
 |  | 
 |     EigenvectorsType& eivecs = solver.m_eivec; | 
 |     VectorType& eivals = solver.m_eivalues; | 
 |  | 
 |     // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow. | 
 |     Scalar shift = mat.trace() / Scalar(2); | 
 |     MatrixType scaledMat = mat; | 
 |     scaledMat.coeffRef(0, 1) = mat.coeff(1, 0); | 
 |     scaledMat.diagonal().array() -= shift; | 
 |     Scalar scale = scaledMat.cwiseAbs().maxCoeff(); | 
 |     if (scale > Scalar(0)) scaledMat /= scale; | 
 |  | 
 |     // Compute the eigenvalues | 
 |     computeRoots(scaledMat, eivals); | 
 |  | 
 |     // compute the eigen vectors | 
 |     if (computeEigenvectors) { | 
 |       if ((eivals(1) - eivals(0)) <= abs(eivals(1)) * Eigen::NumTraits<Scalar>::epsilon()) { | 
 |         eivecs.setIdentity(); | 
 |       } else { | 
 |         scaledMat.diagonal().array() -= eivals(1); | 
 |         Scalar a2 = numext::abs2(scaledMat(0, 0)); | 
 |         Scalar c2 = numext::abs2(scaledMat(1, 1)); | 
 |         Scalar b2 = numext::abs2(scaledMat(1, 0)); | 
 |         if (a2 > c2) { | 
 |           eivecs.col(1) << -scaledMat(1, 0), scaledMat(0, 0); | 
 |           eivecs.col(1) /= sqrt(a2 + b2); | 
 |         } else { | 
 |           eivecs.col(1) << -scaledMat(1, 1), scaledMat(1, 0); | 
 |           eivecs.col(1) /= sqrt(c2 + b2); | 
 |         } | 
 |  | 
 |         eivecs.col(0) << eivecs.col(1).unitOrthogonal(); | 
 |       } | 
 |     } | 
 |  | 
 |     // Rescale back to the original size. | 
 |     eivals *= scale; | 
 |     eivals.array() += shift; | 
 |  | 
 |     solver.m_info = Success; | 
 |     solver.m_isInitialized = true; | 
 |     solver.m_eigenvectorsOk = computeEigenvectors; | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | template <typename MatrixType> | 
 | EIGEN_DEVICE_FUNC SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::computeDirect( | 
 |     const MatrixType& matrix, int options) { | 
 |   internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver, Size, NumTraits<Scalar>::IsComplex>::run( | 
 |       *this, matrix, options); | 
 |   return *this; | 
 | } | 
 |  | 
 | namespace internal { | 
 |  | 
 | // Francis implicit QR step. | 
 | template <int StorageOrder, typename RealScalar, typename Scalar, typename Index> | 
 | EIGEN_DEVICE_FUNC static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, | 
 |                                                   Scalar* matrixQ, Index n) { | 
 |   // Wilkinson Shift. | 
 |   RealScalar td = (diag[end - 1] - diag[end]) * RealScalar(0.5); | 
 |   RealScalar e = subdiag[end - 1]; | 
 |   // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still | 
 |   // underflow thus leading to inf/NaN values when using the following commented code: | 
 |   //   RealScalar e2 = numext::abs2(subdiag[end-1]); | 
 |   //   RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2)); | 
 |   // This explain the following, somewhat more complicated, version: | 
 |   RealScalar mu = diag[end]; | 
 |   if (numext::is_exactly_zero(td)) { | 
 |     mu -= numext::abs(e); | 
 |   } else if (!numext::is_exactly_zero(e)) { | 
 |     const RealScalar e2 = numext::abs2(e); | 
 |     const RealScalar h = numext::hypot(td, e); | 
 |     if (numext::is_exactly_zero(e2)) { | 
 |       mu -= e / ((td + (td > RealScalar(0) ? h : -h)) / e); | 
 |     } else { | 
 |       mu -= e2 / (td + (td > RealScalar(0) ? h : -h)); | 
 |     } | 
 |   } | 
 |  | 
 |   RealScalar x = diag[start] - mu; | 
 |   RealScalar z = subdiag[start]; | 
 |   // If z ever becomes zero, the Givens rotation will be the identity and | 
 |   // z will stay zero for all future iterations. | 
 |   for (Index k = start; k < end && !numext::is_exactly_zero(z); ++k) { | 
 |     JacobiRotation<RealScalar> rot; | 
 |     rot.makeGivens(x, z); | 
 |  | 
 |     // do T = G' T G | 
 |     RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k]; | 
 |     RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k + 1]; | 
 |  | 
 |     diag[k] = | 
 |         rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k + 1]); | 
 |     diag[k + 1] = rot.s() * sdk + rot.c() * dkp1; | 
 |     subdiag[k] = rot.c() * sdk - rot.s() * dkp1; | 
 |  | 
 |     if (k > start) subdiag[k - 1] = rot.c() * subdiag[k - 1] - rot.s() * z; | 
 |  | 
 |     // "Chasing the bulge" to return to triangular form. | 
 |     x = subdiag[k]; | 
 |     if (k < end - 1) { | 
 |       z = -rot.s() * subdiag[k + 1]; | 
 |       subdiag[k + 1] = rot.c() * subdiag[k + 1]; | 
 |     } | 
 |  | 
 |     // apply the givens rotation to the unit matrix Q = Q * G | 
 |     if (matrixQ) { | 
 |       // FIXME if StorageOrder == RowMajor this operation is not very efficient | 
 |       Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > q(matrixQ, n, n); | 
 |       q.applyOnTheRight(k, k + 1, rot); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | }  // end namespace internal | 
 |  | 
 | }  // end namespace Eigen | 
 |  | 
 | #endif  // EIGEN_SELFADJOINTEIGENSOLVER_H |