|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ORTHOMETHODS_H | 
|  | #define EIGEN_ORTHOMETHODS_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // Vector3 version (default) | 
|  | template <typename Derived, typename OtherDerived, int Size> | 
|  | struct cross_impl { | 
|  | typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, | 
|  | typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar; | 
|  | typedef Matrix<Scalar, MatrixBase<Derived>::RowsAtCompileTime, MatrixBase<Derived>::ColsAtCompileTime> return_type; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE return_type run(const MatrixBase<Derived>& first, | 
|  | const MatrixBase<OtherDerived>& second) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 3) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 3) | 
|  |  | 
|  | // Note that there is no need for an expression here since the compiler | 
|  | // optimize such a small temporary very well (even within a complex expression) | 
|  | typename internal::nested_eval<Derived, 2>::type lhs(first.derived()); | 
|  | typename internal::nested_eval<OtherDerived, 2>::type rhs(second.derived()); | 
|  | return return_type(numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), | 
|  | numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), | 
|  | numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Vector2 version | 
|  | template <typename Derived, typename OtherDerived> | 
|  | struct cross_impl<Derived, OtherDerived, 2> { | 
|  | typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar, | 
|  | typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar; | 
|  | typedef Scalar return_type; | 
|  |  | 
|  | static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE return_type run(const MatrixBase<Derived>& first, | 
|  | const MatrixBase<OtherDerived>& second) { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 2); | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 2); | 
|  | typename internal::nested_eval<Derived, 2>::type lhs(first.derived()); | 
|  | typename internal::nested_eval<OtherDerived, 2>::type rhs(second.derived()); | 
|  | return numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \returns the cross product of \c *this and \a other. This is either a scalar for size-2 vectors or a size-3 vector | 
|  | * for size-3 vectors. | 
|  | * | 
|  | * This method is implemented for two different cases: between vectors of fixed size 2 and between vectors of fixed | 
|  | * size 3. | 
|  | * | 
|  | * For vectors of size 3, the output is simply the traditional cross product. | 
|  | * | 
|  | * For vectors of size 2, the output is a scalar. | 
|  | * Given vectors \f$ v = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \f$ and \f$ w = \begin{bmatrix} w_1 & w_2 \end{bmatrix} | 
|  | * \f$, the result is simply \f$ v\times w = \overline{v_1 w_2 - v_2 w_1} = \text{conj}\left|\begin{smallmatrix} v_1 & | 
|  | * w_1 \\ v_2 & w_2 \end{smallmatrix}\right| \f$; or, to put it differently, it is the third coordinate of the cross | 
|  | * product of \f$ \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \f$ and \f$ \begin{bmatrix} w_1 & w_2 & w_3 | 
|  | * \end{bmatrix} \f$. For real-valued inputs, the result can be interpreted as the signed area of a parallelogram | 
|  | * spanned by the two vectors. | 
|  | * | 
|  | * \note With complex numbers, the cross product is implemented as | 
|  | * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times | 
|  | * \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c})\f$ | 
|  | * | 
|  | * \sa MatrixBase::cross3() | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | typename internal::cross_impl<Derived, OtherDerived>::return_type | 
|  | #else | 
|  | inline std::conditional_t<SizeAtCompileTime == 2, Scalar, PlainObject> | 
|  | #endif | 
|  | MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const { | 
|  | return internal::cross_impl<Derived, OtherDerived>::run(*this, other); | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <int Arch, typename VectorLhs, typename VectorRhs, typename Scalar = typename VectorLhs::Scalar, | 
|  | bool Vectorizable = bool((VectorLhs::Flags & VectorRhs::Flags) & PacketAccessBit)> | 
|  | struct cross3_impl { | 
|  | EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type run(const VectorLhs& lhs, | 
|  | const VectorRhs& rhs) { | 
|  | return typename internal::plain_matrix_type<VectorLhs>::type( | 
|  | numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), | 
|  | numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), | 
|  | numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients | 
|  | * | 
|  | * The size of \c *this and \a other must be four. This function is especially useful | 
|  | * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. | 
|  | * | 
|  | * \sa MatrixBase::cross() | 
|  | */ | 
|  | template <typename Derived> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::cross3( | 
|  | const MatrixBase<OtherDerived>& other) const { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived, 4) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 4) | 
|  |  | 
|  | typedef typename internal::nested_eval<Derived, 2>::type DerivedNested; | 
|  | typedef typename internal::nested_eval<OtherDerived, 2>::type OtherDerivedNested; | 
|  | DerivedNested lhs(derived()); | 
|  | OtherDerivedNested rhs(other.derived()); | 
|  |  | 
|  | return internal::cross3_impl<Architecture::Target, internal::remove_all_t<DerivedNested>, | 
|  | internal::remove_all_t<OtherDerivedNested>>::run(lhs, rhs); | 
|  | } | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \returns a matrix expression of the cross product of each column or row | 
|  | * of the referenced expression with the \a other vector. | 
|  | * | 
|  | * The referenced matrix must have one dimension equal to 3. | 
|  | * The result matrix has the same dimensions than the referenced one. | 
|  | * | 
|  | * \sa MatrixBase::cross() */ | 
|  | template <typename ExpressionType, int Direction> | 
|  | template <typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC const typename VectorwiseOp<ExpressionType, Direction>::CrossReturnType | 
|  | VectorwiseOp<ExpressionType, Direction>::cross(const MatrixBase<OtherDerived>& other) const { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived, 3) | 
|  | EIGEN_STATIC_ASSERT( | 
|  | (internal::is_same<Scalar, typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  |  | 
|  | typename internal::nested_eval<ExpressionType, 2>::type mat(_expression()); | 
|  | typename internal::nested_eval<OtherDerived, 2>::type vec(other.derived()); | 
|  |  | 
|  | CrossReturnType res(_expression().rows(), _expression().cols()); | 
|  | if (Direction == Vertical) { | 
|  | eigen_assert(CrossReturnType::RowsAtCompileTime == 3 && "the matrix must have exactly 3 rows"); | 
|  | res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); | 
|  | res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); | 
|  | res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); | 
|  | } else { | 
|  | eigen_assert(CrossReturnType::ColsAtCompileTime == 3 && "the matrix must have exactly 3 columns"); | 
|  | res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); | 
|  | res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); | 
|  | res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Derived, int Size = Derived::SizeAtCompileTime> | 
|  | struct unitOrthogonal_selector { | 
|  | typedef typename plain_matrix_type<Derived>::type VectorType; | 
|  | typedef typename traits<Derived>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, 2, 1> Vector2; | 
|  | EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { | 
|  | VectorType perp = VectorType::Zero(src.size()); | 
|  | Index maxi = 0; | 
|  | Index sndi = 0; | 
|  | src.cwiseAbs().maxCoeff(&maxi); | 
|  | if (maxi == 0) sndi = 1; | 
|  | RealScalar invnm = RealScalar(1) / (Vector2() << src.coeff(sndi), src.coeff(maxi)).finished().norm(); | 
|  | perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; | 
|  | perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; | 
|  |  | 
|  | return perp; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Derived> | 
|  | struct unitOrthogonal_selector<Derived, 3> { | 
|  | typedef typename plain_matrix_type<Derived>::type VectorType; | 
|  | typedef typename traits<Derived>::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { | 
|  | VectorType perp; | 
|  | /* Let us compute the crossed product of *this with a vector | 
|  | * that is not too close to being colinear to *this. | 
|  | */ | 
|  |  | 
|  | /* unless the x and y coords are both close to zero, we can | 
|  | * simply take ( -y, x, 0 ) and normalize it. | 
|  | */ | 
|  | if ((!isMuchSmallerThan(src.x(), src.z())) || (!isMuchSmallerThan(src.y(), src.z()))) { | 
|  | RealScalar invnm = RealScalar(1) / src.template head<2>().norm(); | 
|  | perp.coeffRef(0) = -numext::conj(src.y()) * invnm; | 
|  | perp.coeffRef(1) = numext::conj(src.x()) * invnm; | 
|  | perp.coeffRef(2) = 0; | 
|  | } | 
|  | /* if both x and y are close to zero, then the vector is close | 
|  | * to the z-axis, so it's far from colinear to the x-axis for instance. | 
|  | * So we take the crossed product with (1,0,0) and normalize it. | 
|  | */ | 
|  | else { | 
|  | RealScalar invnm = RealScalar(1) / src.template tail<2>().norm(); | 
|  | perp.coeffRef(0) = 0; | 
|  | perp.coeffRef(1) = -numext::conj(src.z()) * invnm; | 
|  | perp.coeffRef(2) = numext::conj(src.y()) * invnm; | 
|  | } | 
|  |  | 
|  | return perp; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Derived> | 
|  | struct unitOrthogonal_selector<Derived, 2> { | 
|  | typedef typename plain_matrix_type<Derived>::type VectorType; | 
|  | EIGEN_DEVICE_FUNC static inline VectorType run(const Derived& src) { | 
|  | return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \returns a unit vector which is orthogonal to \c *this | 
|  | * | 
|  | * The size of \c *this must be at least 2. If the size is exactly 2, | 
|  | * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). | 
|  | * | 
|  | * \sa cross() | 
|  | */ | 
|  | template <typename Derived> | 
|  | EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject MatrixBase<Derived>::unitOrthogonal() const { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) | 
|  | return internal::unitOrthogonal_selector<Derived>::run(derived()); | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_ORTHOMETHODS_H |