|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | /* | 
|  |  | 
|  | * NOTE: This file is the modified version of [s,d,c,z]column_dfs.c file in SuperLU | 
|  |  | 
|  | * -- SuperLU routine (version 2.0) -- | 
|  | * Univ. of California Berkeley, Xerox Palo Alto Research Center, | 
|  | * and Lawrence Berkeley National Lab. | 
|  | * November 15, 1997 | 
|  | * | 
|  | * Copyright (c) 1994 by Xerox Corporation.  All rights reserved. | 
|  | * | 
|  | * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY | 
|  | * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK. | 
|  | * | 
|  | * Permission is hereby granted to use or copy this program for any | 
|  | * purpose, provided the above notices are retained on all copies. | 
|  | * Permission to modify the code and to distribute modified code is | 
|  | * granted, provided the above notices are retained, and a notice that | 
|  | * the code was modified is included with the above copyright notice. | 
|  | */ | 
|  | #ifndef SPARSELU_COLUMN_DFS_H | 
|  | #define SPARSELU_COLUMN_DFS_H | 
|  |  | 
|  | template <typename Scalar, typename StorageIndex> | 
|  | class SparseLUImpl; | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename IndexVector, typename ScalarVector> | 
|  | struct column_dfs_traits : no_assignment_operator { | 
|  | typedef typename ScalarVector::Scalar Scalar; | 
|  | typedef typename IndexVector::Scalar StorageIndex; | 
|  | column_dfs_traits(Index jcol, Index& jsuper, typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& glu, | 
|  | SparseLUImpl<Scalar, StorageIndex>& luImpl) | 
|  | : m_jcol(jcol), m_jsuper_ref(jsuper), m_glu(glu), m_luImpl(luImpl) {} | 
|  | bool update_segrep(Index /*krep*/, Index /*jj*/) { return true; } | 
|  | void mem_expand(IndexVector& lsub, Index& nextl, Index chmark) { | 
|  | if (nextl >= m_glu.nzlmax) m_luImpl.memXpand(lsub, m_glu.nzlmax, nextl, LSUB, m_glu.num_expansions); | 
|  | if (chmark != (m_jcol - 1)) m_jsuper_ref = emptyIdxLU; | 
|  | } | 
|  | enum { ExpandMem = true }; | 
|  |  | 
|  | Index m_jcol; | 
|  | Index& m_jsuper_ref; | 
|  | typename SparseLUImpl<Scalar, StorageIndex>::GlobalLU_t& m_glu; | 
|  | SparseLUImpl<Scalar, StorageIndex>& m_luImpl; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * \brief Performs a symbolic factorization on column jcol and decide the supernode boundary | 
|  | * | 
|  | * A supernode representative is the last column of a supernode. | 
|  | * The nonzeros in U[*,j] are segments that end at supernodes representatives. | 
|  | * The routine returns a list of the supernodal representatives | 
|  | * in topological order of the dfs that generates them. | 
|  | * The location of the first nonzero in each supernodal segment | 
|  | * (supernodal entry location) is also returned. | 
|  | * | 
|  | * \param m number of rows in the matrix | 
|  | * \param jcol Current column | 
|  | * \param perm_r Row permutation | 
|  | * \param maxsuper  Maximum number of column allowed in a supernode | 
|  | * \param [in,out] nseg Number of segments in current U[*,j] - new segments appended | 
|  | * \param lsub_col defines the rhs vector to start the dfs | 
|  | * \param [in,out] segrep Segment representatives - new segments appended | 
|  | * \param repfnz  First nonzero location in each row | 
|  | * \param xprune | 
|  | * \param marker  marker[i] == jj, if i was visited during dfs of current column jj; | 
|  | * \param parent | 
|  | * \param xplore working array | 
|  | * \param glu global LU data | 
|  | * \return 0 success | 
|  | *         > 0 number of bytes allocated when run out of space | 
|  | * | 
|  | */ | 
|  | template <typename Scalar, typename StorageIndex> | 
|  | Index SparseLUImpl<Scalar, StorageIndex>::column_dfs(const Index m, const Index jcol, IndexVector& perm_r, | 
|  | Index maxsuper, Index& nseg, BlockIndexVector lsub_col, | 
|  | IndexVector& segrep, BlockIndexVector repfnz, IndexVector& xprune, | 
|  | IndexVector& marker, IndexVector& parent, IndexVector& xplore, | 
|  | GlobalLU_t& glu) { | 
|  | Index jsuper = glu.supno(jcol); | 
|  | Index nextl = glu.xlsub(jcol); | 
|  | VectorBlock<IndexVector> marker2(marker, 2 * m, m); | 
|  |  | 
|  | column_dfs_traits<IndexVector, ScalarVector> traits(jcol, jsuper, glu, *this); | 
|  |  | 
|  | // For each nonzero in A(*,jcol) do dfs | 
|  | for (Index k = 0; ((k < m) ? lsub_col[k] != emptyIdxLU : false); k++) { | 
|  | Index krow = lsub_col(k); | 
|  | lsub_col(k) = emptyIdxLU; | 
|  | Index kmark = marker2(krow); | 
|  |  | 
|  | // krow was visited before, go to the next nonz; | 
|  | if (kmark == jcol) continue; | 
|  |  | 
|  | dfs_kernel(StorageIndex(jcol), perm_r, nseg, glu.lsub, segrep, repfnz, xprune, marker2, parent, xplore, glu, nextl, | 
|  | krow, traits); | 
|  | }  // for each nonzero ... | 
|  |  | 
|  | Index fsupc; | 
|  | StorageIndex nsuper = glu.supno(jcol); | 
|  | StorageIndex jcolp1 = StorageIndex(jcol) + 1; | 
|  | Index jcolm1 = jcol - 1; | 
|  |  | 
|  | // check to see if j belongs in the same supernode as j-1 | 
|  | if (jcol == 0) {  // Do nothing for column 0 | 
|  | nsuper = glu.supno(0) = 0; | 
|  | } else { | 
|  | fsupc = glu.xsup(nsuper); | 
|  | StorageIndex jptr = glu.xlsub(jcol);  // Not yet compressed | 
|  | StorageIndex jm1ptr = glu.xlsub(jcolm1); | 
|  |  | 
|  | // Use supernodes of type T2 : see SuperLU paper | 
|  | if ((nextl - jptr != jptr - jm1ptr - 1)) jsuper = emptyIdxLU; | 
|  |  | 
|  | // Make sure the number of columns in a supernode doesn't | 
|  | // exceed threshold | 
|  | if ((jcol - fsupc) >= maxsuper) jsuper = emptyIdxLU; | 
|  |  | 
|  | /* If jcol starts a new supernode, reclaim storage space in | 
|  | * glu.lsub from previous supernode. Note we only store | 
|  | * the subscript set of the first and last columns of | 
|  | * a supernode. (first for num values, last for pruning) | 
|  | */ | 
|  | if (jsuper == emptyIdxLU) {    // starts a new supernode | 
|  | if ((fsupc < jcolm1 - 1)) {  // >= 3 columns in nsuper | 
|  | StorageIndex ito = glu.xlsub(fsupc + 1); | 
|  | glu.xlsub(jcolm1) = ito; | 
|  | StorageIndex istop = ito + jptr - jm1ptr; | 
|  | xprune(jcolm1) = istop;  // initialize xprune(jcol-1) | 
|  | glu.xlsub(jcol) = istop; | 
|  |  | 
|  | for (StorageIndex ifrom = jm1ptr; ifrom < nextl; ++ifrom, ++ito) glu.lsub(ito) = glu.lsub(ifrom); | 
|  | nextl = ito;  // = istop + length(jcol) | 
|  | } | 
|  | nsuper++; | 
|  | glu.supno(jcol) = nsuper; | 
|  | }  // if a new supernode | 
|  | }    // end else:  jcol > 0 | 
|  |  | 
|  | // Tidy up the pointers before exit | 
|  | glu.xsup(nsuper + 1) = jcolp1; | 
|  | glu.supno(jcolp1) = nsuper; | 
|  | xprune(jcol) = StorageIndex(nextl);  // Initialize upper bound for pruning | 
|  | glu.xlsub(jcolp1) = StorageIndex(nextl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | }  // end namespace internal | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif |