|  | 
 | // g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && | 
 | // ./a.out g++ -O3 -g0 -DNDEBUG  sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 | 
 | // -DSIZE=2000 && ./a.out | 
 | //  -DNOGMM -DNOMTL -DCSPARSE | 
 | //  -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a | 
 | #ifndef SIZE | 
 | #define SIZE 650000 | 
 | #endif | 
 |  | 
 | #ifndef DENSITY | 
 | #define DENSITY 0.01 | 
 | #endif | 
 |  | 
 | #ifndef REPEAT | 
 | #define REPEAT 1 | 
 | #endif | 
 |  | 
 | #include "BenchSparseUtil.h" | 
 |  | 
 | #ifndef MINDENSITY | 
 | #define MINDENSITY 0.0004 | 
 | #endif | 
 |  | 
 | #ifndef NBTRIES | 
 | #define NBTRIES 10 | 
 | #endif | 
 |  | 
 | #define BENCH(X)                          \ | 
 |   timer.reset();                          \ | 
 |   for (int _j = 0; _j < NBTRIES; ++_j) {  \ | 
 |     timer.start();                        \ | 
 |     for (int _k = 0; _k < REPEAT; ++_k) { \ | 
 |       X                                   \ | 
 |     }                                     \ | 
 |     timer.stop();                         \ | 
 |   } | 
 |  | 
 | #ifdef CSPARSE | 
 | cs* cs_sorted_multiply(const cs* a, const cs* b) { | 
 |   cs* A = cs_transpose(a, 1); | 
 |   cs* B = cs_transpose(b, 1); | 
 |   cs* D = cs_multiply(B, A); /* D = B'*A' */ | 
 |   cs_spfree(A); | 
 |   cs_spfree(B); | 
 |   cs_dropzeros(D);            /* drop zeros from D */ | 
 |   cs* C = cs_transpose(D, 1); /* C = D', so that C is sorted */ | 
 |   cs_spfree(D); | 
 |   return C; | 
 | } | 
 | #endif | 
 |  | 
 | int main(int argc, char* argv[]) { | 
 |   int rows = SIZE; | 
 |   int cols = SIZE; | 
 |   float density = DENSITY; | 
 |  | 
 |   EigenSparseMatrix sm1(rows, cols); | 
 |   DenseVector v1(cols), v2(cols); | 
 |   v1.setRandom(); | 
 |  | 
 |   BenchTimer timer; | 
 |   for (float density = DENSITY; density >= MINDENSITY; density *= 0.5) { | 
 |     // fillMatrix(density, rows, cols, sm1); | 
 |     fillMatrix2(7, rows, cols, sm1); | 
 |  | 
 | // dense matrices | 
 | #ifdef DENSEMATRIX | 
 |     { | 
 |       std::cout << "Eigen Dense\t" << density * 100 << "%\n"; | 
 |       DenseMatrix m1(rows, cols); | 
 |       eiToDense(sm1, m1); | 
 |  | 
 |       timer.reset(); | 
 |       timer.start(); | 
 |       for (int k = 0; k < REPEAT; ++k) v2 = m1 * v1; | 
 |       timer.stop(); | 
 |       std::cout << "   a * v:\t" << timer.best() << "  " << double(REPEAT) / timer.best() << " * / sec " << endl; | 
 |  | 
 |       timer.reset(); | 
 |       timer.start(); | 
 |       for (int k = 0; k < REPEAT; ++k) v2 = m1.transpose() * v1; | 
 |       timer.stop(); | 
 |       std::cout << "   a' * v:\t" << timer.best() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 |     // eigen sparse matrices | 
 |     { | 
 |       std::cout << "Eigen sparse\t" << sm1.nonZeros() / float(sm1.rows() * sm1.cols()) * 100 << "%\n"; | 
 |  | 
 |       BENCH(asm("#myc"); v2 = sm1 * v1; asm("#myd");) | 
 |       std::cout << "   a * v:\t" << timer.best() / REPEAT << "  " << double(REPEAT) / timer.best(REAL_TIMER) | 
 |                 << " * / sec " << endl; | 
 |  | 
 |       BENCH({ | 
 |         asm("#mya"); | 
 |         v2 = sm1.transpose() * v1; | 
 |         asm("#myb"); | 
 |       }) | 
 |  | 
 |       std::cout << "   a' * v:\t" << timer.best() / REPEAT << endl; | 
 |     } | 
 |  | 
 |     //     { | 
 |     //       DynamicSparseMatrix<Scalar> m1(sm1); | 
 |     //       std::cout << "Eigen dyn-sparse\t" << m1.nonZeros()/float(m1.rows()*m1.cols())*100 << "%\n"; | 
 |     // | 
 |     //       BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1 * v1;) | 
 |     //       std::cout << "   a * v:\t" << timer.value() << endl; | 
 |     // | 
 |     //       BENCH(for (int k=0; k<REPEAT; ++k) v2 = m1.transpose() * v1;) | 
 |     //       std::cout << "   a' * v:\t" << timer.value() << endl; | 
 |     //     } | 
 |  | 
 | // GMM++ | 
 | #ifndef NOGMM | 
 |     { | 
 |       std::cout << "GMM++ sparse\t" << density * 100 << "%\n"; | 
 |       // GmmDynSparse  gmmT3(rows,cols); | 
 |       GmmSparse m1(rows, cols); | 
 |       eiToGmm(sm1, m1); | 
 |  | 
 |       std::vector<Scalar> gmmV1(cols), gmmV2(cols); | 
 |       Map<Matrix<Scalar, Dynamic, 1> >(&gmmV1[0], cols) = v1; | 
 |       Map<Matrix<Scalar, Dynamic, 1> >(&gmmV2[0], cols) = v2; | 
 |  | 
 |       BENCH(asm("#myx"); gmm::mult(m1, gmmV1, gmmV2); asm("#myy");) | 
 |       std::cout << "   a * v:\t" << timer.value() << endl; | 
 |  | 
 |       BENCH(gmm::mult(gmm::transposed(m1), gmmV1, gmmV2);) | 
 |       std::cout << "   a' * v:\t" << timer.value() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 | #ifndef NOUBLAS | 
 |     { | 
 |       std::cout << "ublas sparse\t" << density * 100 << "%\n"; | 
 |       UBlasSparse m1(rows, cols); | 
 |       eiToUblas(sm1, m1); | 
 |  | 
 |       boost::numeric::ublas::vector<Scalar> uv1, uv2; | 
 |       eiToUblasVec(v1, uv1); | 
 |       eiToUblasVec(v2, uv2); | 
 |  | 
 |       //       std::vector<Scalar> gmmV1(cols), gmmV2(cols); | 
 |       //       Map<Matrix<Scalar,Dynamic,1> >(&gmmV1[0], cols) = v1; | 
 |       //       Map<Matrix<Scalar,Dynamic,1> >(&gmmV2[0], cols) = v2; | 
 |  | 
 |       BENCH(uv2 = boost::numeric::ublas::prod(m1, uv1);) | 
 |       std::cout << "   a * v:\t" << timer.value() << endl; | 
 |  | 
 |       //       BENCH( boost::ublas::prod(gmm::transposed(m1), gmmV1, gmmV2); ) | 
 |       //       std::cout << "   a' * v:\t" << timer.value() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 | // MTL4 | 
 | #ifndef NOMTL | 
 |     { | 
 |       std::cout << "MTL4\t" << density * 100 << "%\n"; | 
 |       MtlSparse m1(rows, cols); | 
 |       eiToMtl(sm1, m1); | 
 |       mtl::dense_vector<Scalar> mtlV1(cols, 1.0); | 
 |       mtl::dense_vector<Scalar> mtlV2(cols, 1.0); | 
 |  | 
 |       timer.reset(); | 
 |       timer.start(); | 
 |       for (int k = 0; k < REPEAT; ++k) mtlV2 = m1 * mtlV1; | 
 |       timer.stop(); | 
 |       std::cout << "   a * v:\t" << timer.value() << endl; | 
 |  | 
 |       timer.reset(); | 
 |       timer.start(); | 
 |       for (int k = 0; k < REPEAT; ++k) mtlV2 = trans(m1) * mtlV1; | 
 |       timer.stop(); | 
 |       std::cout << "   a' * v:\t" << timer.value() << endl; | 
 |     } | 
 | #endif | 
 |  | 
 |     std::cout << "\n\n"; | 
 |   } | 
 |  | 
 |   return 0; | 
 | } |