| /* chbmv.f -- translated by f2c (version 20100827). | 
 |    You must link the resulting object file with libf2c: | 
 |         on Microsoft Windows system, link with libf2c.lib; | 
 |         on Linux or Unix systems, link with .../path/to/libf2c.a -lm | 
 |         or, if you install libf2c.a in a standard place, with -lf2c -lm | 
 |         -- in that order, at the end of the command line, as in | 
 |                 cc *.o -lf2c -lm | 
 |         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | 
 |  | 
 |                 http://www.netlib.org/f2c/libf2c.zip | 
 | */ | 
 |  | 
 | #include "datatypes.h" | 
 |  | 
 | static inline void r_cnjg(complex *r, complex *z) { | 
 |   r->r = z->r; | 
 |   r->i = -(z->i); | 
 | } | 
 |  | 
 | /* Subroutine */ void chbmv_(char *uplo, integer *n, integer *k, complex *alpha, complex *a, integer *lda, complex *x, | 
 |                              integer *incx, complex *beta, complex *y, integer *incy) { | 
 |   /* System generated locals */ | 
 |   integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; | 
 |   real r__1; | 
 |   complex q__1, q__2, q__3, q__4; | 
 |  | 
 |   /* Local variables */ | 
 |   integer i__, j, l, ix, iy, jx, jy, kx, ky, info; | 
 |   complex temp1, temp2; | 
 |   extern logical lsame_(char *, char *); | 
 |   integer kplus1; | 
 |   extern /* Subroutine */ void xerbla_(const char *, integer *); | 
 |  | 
 |   /*     .. Scalar Arguments .. */ | 
 |   /*     .. */ | 
 |   /*     .. Array Arguments .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*  Purpose */ | 
 |   /*  ======= */ | 
 |  | 
 |   /*  CHBMV  performs the matrix-vector  operation */ | 
 |  | 
 |   /*     y := alpha*A*x + beta*y, */ | 
 |  | 
 |   /*  where alpha and beta are scalars, x and y are n element vectors and */ | 
 |   /*  A is an n by n hermitian band matrix, with k super-diagonals. */ | 
 |  | 
 |   /*  Arguments */ | 
 |   /*  ========== */ | 
 |  | 
 |   /*  UPLO   - CHARACTER*1. */ | 
 |   /*           On entry, UPLO specifies whether the upper or lower */ | 
 |   /*           triangular part of the band matrix A is being supplied as */ | 
 |   /*           follows: */ | 
 |  | 
 |   /*              UPLO = 'U' or 'u'   The upper triangular part of A is */ | 
 |   /*                                  being supplied. */ | 
 |  | 
 |   /*              UPLO = 'L' or 'l'   The lower triangular part of A is */ | 
 |   /*                                  being supplied. */ | 
 |  | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  N      - INTEGER. */ | 
 |   /*           On entry, N specifies the order of the matrix A. */ | 
 |   /*           N must be at least zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  K      - INTEGER. */ | 
 |   /*           On entry, K specifies the number of super-diagonals of the */ | 
 |   /*           matrix A. K must satisfy  0 .le. K. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  ALPHA  - COMPLEX         . */ | 
 |   /*           On entry, ALPHA specifies the scalar alpha. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  A      - COMPLEX          array of DIMENSION ( LDA, n ). */ | 
 |   /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ | 
 |   /*           by n part of the array A must contain the upper triangular */ | 
 |   /*           band part of the hermitian matrix, supplied column by */ | 
 |   /*           column, with the leading diagonal of the matrix in row */ | 
 |   /*           ( k + 1 ) of the array, the first super-diagonal starting at */ | 
 |   /*           position 2 in row k, and so on. The top left k by k triangle */ | 
 |   /*           of the array A is not referenced. */ | 
 |   /*           The following program segment will transfer the upper */ | 
 |   /*           triangular part of a hermitian band matrix from conventional */ | 
 |   /*           full matrix storage to band storage: */ | 
 |  | 
 |   /*                 DO 20, J = 1, N */ | 
 |   /*                    M = K + 1 - J */ | 
 |   /*                    DO 10, I = MAX( 1, J - K ), J */ | 
 |   /*                       A( M + I, J ) = matrix( I, J ) */ | 
 |   /*              10    CONTINUE */ | 
 |   /*              20 CONTINUE */ | 
 |  | 
 |   /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ | 
 |   /*           by n part of the array A must contain the lower triangular */ | 
 |   /*           band part of the hermitian matrix, supplied column by */ | 
 |   /*           column, with the leading diagonal of the matrix in row 1 of */ | 
 |   /*           the array, the first sub-diagonal starting at position 1 in */ | 
 |   /*           row 2, and so on. The bottom right k by k triangle of the */ | 
 |   /*           array A is not referenced. */ | 
 |   /*           The following program segment will transfer the lower */ | 
 |   /*           triangular part of a hermitian band matrix from conventional */ | 
 |   /*           full matrix storage to band storage: */ | 
 |  | 
 |   /*                 DO 20, J = 1, N */ | 
 |   /*                    M = 1 - J */ | 
 |   /*                    DO 10, I = J, MIN( N, J + K ) */ | 
 |   /*                       A( M + I, J ) = matrix( I, J ) */ | 
 |   /*              10    CONTINUE */ | 
 |   /*              20 CONTINUE */ | 
 |  | 
 |   /*           Note that the imaginary parts of the diagonal elements need */ | 
 |   /*           not be set and are assumed to be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  LDA    - INTEGER. */ | 
 |   /*           On entry, LDA specifies the first dimension of A as declared */ | 
 |   /*           in the calling (sub) program. LDA must be at least */ | 
 |   /*           ( k + 1 ). */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  X      - COMPLEX          array of DIMENSION at least */ | 
 |   /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | 
 |   /*           Before entry, the incremented array X must contain the */ | 
 |   /*           vector x. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  INCX   - INTEGER. */ | 
 |   /*           On entry, INCX specifies the increment for the elements of */ | 
 |   /*           X. INCX must not be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  BETA   - COMPLEX         . */ | 
 |   /*           On entry, BETA specifies the scalar beta. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  Y      - COMPLEX          array of DIMENSION at least */ | 
 |   /*           ( 1 + ( n - 1 )*abs( INCY ) ). */ | 
 |   /*           Before entry, the incremented array Y must contain the */ | 
 |   /*           vector y. On exit, Y is overwritten by the updated vector y. */ | 
 |  | 
 |   /*  INCY   - INTEGER. */ | 
 |   /*           On entry, INCY specifies the increment for the elements of */ | 
 |   /*           Y. INCY must not be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  Further Details */ | 
 |   /*  =============== */ | 
 |  | 
 |   /*  Level 2 Blas routine. */ | 
 |  | 
 |   /*  -- Written on 22-October-1986. */ | 
 |   /*     Jack Dongarra, Argonne National Lab. */ | 
 |   /*     Jeremy Du Croz, Nag Central Office. */ | 
 |   /*     Sven Hammarling, Nag Central Office. */ | 
 |   /*     Richard Hanson, Sandia National Labs. */ | 
 |  | 
 |   /*  ===================================================================== */ | 
 |  | 
 |   /*     .. Parameters .. */ | 
 |   /*     .. */ | 
 |   /*     .. Local Scalars .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Functions .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Subroutines .. */ | 
 |   /*     .. */ | 
 |   /*     .. Intrinsic Functions .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*     Test the input parameters. */ | 
 |  | 
 |   /* Parameter adjustments */ | 
 |   a_dim1 = *lda; | 
 |   a_offset = 1 + a_dim1; | 
 |   a -= a_offset; | 
 |   --x; | 
 |   --y; | 
 |  | 
 |   /* Function Body */ | 
 |   info = 0; | 
 |   if (!lsame_(uplo, "U") && !lsame_(uplo, "L")) { | 
 |     info = 1; | 
 |   } else if (*n < 0) { | 
 |     info = 2; | 
 |   } else if (*k < 0) { | 
 |     info = 3; | 
 |   } else if (*lda < *k + 1) { | 
 |     info = 6; | 
 |   } else if (*incx == 0) { | 
 |     info = 8; | 
 |   } else if (*incy == 0) { | 
 |     info = 11; | 
 |   } | 
 |   if (info != 0) { | 
 |     xerbla_("CHBMV ", &info); | 
 |     return; | 
 |   } | 
 |  | 
 |   /*     Quick return if possible. */ | 
 |  | 
 |   if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f && beta->i == 0.f))) { | 
 |     return; | 
 |   } | 
 |  | 
 |   /*     Set up the start points in  X  and  Y. */ | 
 |  | 
 |   if (*incx > 0) { | 
 |     kx = 1; | 
 |   } else { | 
 |     kx = 1 - (*n - 1) * *incx; | 
 |   } | 
 |   if (*incy > 0) { | 
 |     ky = 1; | 
 |   } else { | 
 |     ky = 1 - (*n - 1) * *incy; | 
 |   } | 
 |  | 
 |   /*     Start the operations. In this version the elements of the array A */ | 
 |   /*     are accessed sequentially with one pass through A. */ | 
 |  | 
 |   /*     First form  y := beta*y. */ | 
 |  | 
 |   if (beta->r != 1.f || beta->i != 0.f) { | 
 |     if (*incy == 1) { | 
 |       if (beta->r == 0.f && beta->i == 0.f) { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = i__; | 
 |           y[i__2].r = 0.f, y[i__2].i = 0.f; | 
 |           /* L10: */ | 
 |         } | 
 |       } else { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = i__; | 
 |           i__3 = i__; | 
 |           q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r; | 
 |           y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
 |           /* L20: */ | 
 |         } | 
 |       } | 
 |     } else { | 
 |       iy = ky; | 
 |       if (beta->r == 0.f && beta->i == 0.f) { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = iy; | 
 |           y[i__2].r = 0.f, y[i__2].i = 0.f; | 
 |           iy += *incy; | 
 |           /* L30: */ | 
 |         } | 
 |       } else { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = iy; | 
 |           i__3 = iy; | 
 |           q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, q__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r; | 
 |           y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
 |           iy += *incy; | 
 |           /* L40: */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   if (alpha->r == 0.f && alpha->i == 0.f) { | 
 |     return; | 
 |   } | 
 |   if (lsame_(uplo, "U")) { | 
 |     /*        Form  y  when upper triangle of A is stored. */ | 
 |  | 
 |     kplus1 = *k + 1; | 
 |     if (*incx == 1 && *incy == 1) { | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__2 = j; | 
 |         q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
 |         temp1.r = q__1.r, temp1.i = q__1.i; | 
 |         temp2.r = 0.f, temp2.i = 0.f; | 
 |         l = kplus1 - j; | 
 |         /* Computing MAX */ | 
 |         i__2 = 1, i__3 = j - *k; | 
 |         i__4 = j - 1; | 
 |         for (i__ = max(i__2, i__3); i__ <= i__4; ++i__) { | 
 |           i__2 = i__; | 
 |           i__3 = i__; | 
 |           i__5 = l + i__ + j * a_dim1; | 
 |           q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r; | 
 |           q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i; | 
 |           y[i__2].r = q__1.r, y[i__2].i = q__1.i; | 
 |           r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); | 
 |           i__2 = i__; | 
 |           q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i = q__3.r * x[i__2].i + q__3.i * x[i__2].r; | 
 |           q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
 |           temp2.r = q__1.r, temp2.i = q__1.i; | 
 |           /* L50: */ | 
 |         } | 
 |         i__4 = j; | 
 |         i__2 = j; | 
 |         i__3 = kplus1 + j * a_dim1; | 
 |         r__1 = a[i__3].r; | 
 |         q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | 
 |         q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i; | 
 |         q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | 
 |         y[i__4].r = q__1.r, y[i__4].i = q__1.i; | 
 |         /* L60: */ | 
 |       } | 
 |     } else { | 
 |       jx = kx; | 
 |       jy = ky; | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__4 = jx; | 
 |         q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i = alpha->r * x[i__4].i + alpha->i * x[i__4].r; | 
 |         temp1.r = q__1.r, temp1.i = q__1.i; | 
 |         temp2.r = 0.f, temp2.i = 0.f; | 
 |         ix = kx; | 
 |         iy = ky; | 
 |         l = kplus1 - j; | 
 |         /* Computing MAX */ | 
 |         i__4 = 1, i__2 = j - *k; | 
 |         i__3 = j - 1; | 
 |         for (i__ = max(i__4, i__2); i__ <= i__3; ++i__) { | 
 |           i__4 = iy; | 
 |           i__2 = iy; | 
 |           i__5 = l + i__ + j * a_dim1; | 
 |           q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r; | 
 |           q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; | 
 |           y[i__4].r = q__1.r, y[i__4].i = q__1.i; | 
 |           r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); | 
 |           i__4 = ix; | 
 |           q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r; | 
 |           q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
 |           temp2.r = q__1.r, temp2.i = q__1.i; | 
 |           ix += *incx; | 
 |           iy += *incy; | 
 |           /* L70: */ | 
 |         } | 
 |         i__3 = jy; | 
 |         i__4 = jy; | 
 |         i__2 = kplus1 + j * a_dim1; | 
 |         r__1 = a[i__2].r; | 
 |         q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i; | 
 |         q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i; | 
 |         q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i; | 
 |         y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
 |         jx += *incx; | 
 |         jy += *incy; | 
 |         if (j > *k) { | 
 |           kx += *incx; | 
 |           ky += *incy; | 
 |         } | 
 |         /* L80: */ | 
 |       } | 
 |     } | 
 |   } else { | 
 |     /*        Form  y  when lower triangle of A is stored. */ | 
 |  | 
 |     if (*incx == 1 && *incy == 1) { | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__3 = j; | 
 |         q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r; | 
 |         temp1.r = q__1.r, temp1.i = q__1.i; | 
 |         temp2.r = 0.f, temp2.i = 0.f; | 
 |         i__3 = j; | 
 |         i__4 = j; | 
 |         i__2 = j * a_dim1 + 1; | 
 |         r__1 = a[i__2].r; | 
 |         q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | 
 |         q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
 |         y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
 |         l = 1 - j; | 
 |         /* Computing MIN */ | 
 |         i__4 = *n, i__2 = j + *k; | 
 |         i__3 = min(i__4, i__2); | 
 |         for (i__ = j + 1; i__ <= i__3; ++i__) { | 
 |           i__4 = i__; | 
 |           i__2 = i__; | 
 |           i__5 = l + i__ + j * a_dim1; | 
 |           q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r; | 
 |           q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; | 
 |           y[i__4].r = q__1.r, y[i__4].i = q__1.i; | 
 |           r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); | 
 |           i__4 = i__; | 
 |           q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r; | 
 |           q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
 |           temp2.r = q__1.r, temp2.i = q__1.i; | 
 |           /* L90: */ | 
 |         } | 
 |         i__3 = j; | 
 |         i__4 = j; | 
 |         q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
 |         y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
 |         /* L100: */ | 
 |       } | 
 |     } else { | 
 |       jx = kx; | 
 |       jy = ky; | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__3 = jx; | 
 |         q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i = alpha->r * x[i__3].i + alpha->i * x[i__3].r; | 
 |         temp1.r = q__1.r, temp1.i = q__1.i; | 
 |         temp2.r = 0.f, temp2.i = 0.f; | 
 |         i__3 = jy; | 
 |         i__4 = jy; | 
 |         i__2 = j * a_dim1 + 1; | 
 |         r__1 = a[i__2].r; | 
 |         q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i; | 
 |         q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
 |         y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
 |         l = 1 - j; | 
 |         ix = jx; | 
 |         iy = jy; | 
 |         /* Computing MIN */ | 
 |         i__4 = *n, i__2 = j + *k; | 
 |         i__3 = min(i__4, i__2); | 
 |         for (i__ = j + 1; i__ <= i__3; ++i__) { | 
 |           ix += *incx; | 
 |           iy += *incy; | 
 |           i__4 = iy; | 
 |           i__2 = iy; | 
 |           i__5 = l + i__ + j * a_dim1; | 
 |           q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i, q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5].r; | 
 |           q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i; | 
 |           y[i__4].r = q__1.r, y[i__4].i = q__1.i; | 
 |           r_cnjg(&q__3, &a[l + i__ + j * a_dim1]); | 
 |           i__4 = ix; | 
 |           q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i = q__3.r * x[i__4].i + q__3.i * x[i__4].r; | 
 |           q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i; | 
 |           temp2.r = q__1.r, temp2.i = q__1.i; | 
 |           /* L110: */ | 
 |         } | 
 |         i__3 = jy; | 
 |         i__4 = jy; | 
 |         q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i; | 
 |         y[i__3].r = q__1.r, y[i__3].i = q__1.i; | 
 |         jx += *incx; | 
 |         jy += *incy; | 
 |         /* L120: */ | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /*     End of CHBMV . */ | 
 |  | 
 | } /* chbmv_ */ |