| /* zhpmv.f -- translated by f2c (version 20100827). | 
 |    You must link the resulting object file with libf2c: | 
 |         on Microsoft Windows system, link with libf2c.lib; | 
 |         on Linux or Unix systems, link with .../path/to/libf2c.a -lm | 
 |         or, if you install libf2c.a in a standard place, with -lf2c -lm | 
 |         -- in that order, at the end of the command line, as in | 
 |                 cc *.o -lf2c -lm | 
 |         Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | 
 |  | 
 |                 http://www.netlib.org/f2c/libf2c.zip | 
 | */ | 
 |  | 
 | #include "datatypes.h" | 
 |  | 
 | static inline void d_cnjg(doublecomplex *r, doublecomplex *z) { | 
 |   r->r = z->r; | 
 |   r->i = -(z->i); | 
 | } | 
 |  | 
 | /* Subroutine */ void zhpmv_(char *uplo, integer *n, doublecomplex *alpha, doublecomplex *ap, doublecomplex *x, | 
 |                              integer *incx, doublecomplex *beta, doublecomplex *y, integer *incy) { | 
 |   /* System generated locals */ | 
 |   integer i__1, i__2, i__3, i__4, i__5; | 
 |   doublereal d__1; | 
 |   doublecomplex z__1, z__2, z__3, z__4; | 
 |  | 
 |   /* Local variables */ | 
 |   integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info; | 
 |   doublecomplex temp1, temp2; | 
 |   extern logical lsame_(char *, char *); | 
 |   extern /* Subroutine */ void xerbla_(const char *, integer *); | 
 |  | 
 |   /*     .. Scalar Arguments .. */ | 
 |   /*     .. */ | 
 |   /*     .. Array Arguments .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*  Purpose */ | 
 |   /*  ======= */ | 
 |  | 
 |   /*  ZHPMV  performs the matrix-vector operation */ | 
 |  | 
 |   /*     y := alpha*A*x + beta*y, */ | 
 |  | 
 |   /*  where alpha and beta are scalars, x and y are n element vectors and */ | 
 |   /*  A is an n by n hermitian matrix, supplied in packed form. */ | 
 |  | 
 |   /*  Arguments */ | 
 |   /*  ========== */ | 
 |  | 
 |   /*  UPLO   - CHARACTER*1. */ | 
 |   /*           On entry, UPLO specifies whether the upper or lower */ | 
 |   /*           triangular part of the matrix A is supplied in the packed */ | 
 |   /*           array AP as follows: */ | 
 |  | 
 |   /*              UPLO = 'U' or 'u'   The upper triangular part of A is */ | 
 |   /*                                  supplied in AP. */ | 
 |  | 
 |   /*              UPLO = 'L' or 'l'   The lower triangular part of A is */ | 
 |   /*                                  supplied in AP. */ | 
 |  | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  N      - INTEGER. */ | 
 |   /*           On entry, N specifies the order of the matrix A. */ | 
 |   /*           N must be at least zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  ALPHA  - COMPLEX*16      . */ | 
 |   /*           On entry, ALPHA specifies the scalar alpha. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  AP     - COMPLEX*16       array of DIMENSION at least */ | 
 |   /*           ( ( n*( n + 1 ) )/2 ). */ | 
 |   /*           Before entry with UPLO = 'U' or 'u', the array AP must */ | 
 |   /*           contain the upper triangular part of the hermitian matrix */ | 
 |   /*           packed sequentially, column by column, so that AP( 1 ) */ | 
 |   /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ | 
 |   /*           and a( 2, 2 ) respectively, and so on. */ | 
 |   /*           Before entry with UPLO = 'L' or 'l', the array AP must */ | 
 |   /*           contain the lower triangular part of the hermitian matrix */ | 
 |   /*           packed sequentially, column by column, so that AP( 1 ) */ | 
 |   /*           contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ | 
 |   /*           and a( 3, 1 ) respectively, and so on. */ | 
 |   /*           Note that the imaginary parts of the diagonal elements need */ | 
 |   /*           not be set and are assumed to be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  X      - COMPLEX*16       array of dimension at least */ | 
 |   /*           ( 1 + ( n - 1 )*abs( INCX ) ). */ | 
 |   /*           Before entry, the incremented array X must contain the n */ | 
 |   /*           element vector x. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  INCX   - INTEGER. */ | 
 |   /*           On entry, INCX specifies the increment for the elements of */ | 
 |   /*           X. INCX must not be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  BETA   - COMPLEX*16      . */ | 
 |   /*           On entry, BETA specifies the scalar beta. When BETA is */ | 
 |   /*           supplied as zero then Y need not be set on input. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  Y      - COMPLEX*16       array of dimension at least */ | 
 |   /*           ( 1 + ( n - 1 )*abs( INCY ) ). */ | 
 |   /*           Before entry, the incremented array Y must contain the n */ | 
 |   /*           element vector y. On exit, Y is overwritten by the updated */ | 
 |   /*           vector y. */ | 
 |  | 
 |   /*  INCY   - INTEGER. */ | 
 |   /*           On entry, INCY specifies the increment for the elements of */ | 
 |   /*           Y. INCY must not be zero. */ | 
 |   /*           Unchanged on exit. */ | 
 |  | 
 |   /*  Further Details */ | 
 |   /*  =============== */ | 
 |  | 
 |   /*  Level 2 Blas routine. */ | 
 |  | 
 |   /*  -- Written on 22-October-1986. */ | 
 |   /*     Jack Dongarra, Argonne National Lab. */ | 
 |   /*     Jeremy Du Croz, Nag Central Office. */ | 
 |   /*     Sven Hammarling, Nag Central Office. */ | 
 |   /*     Richard Hanson, Sandia National Labs. */ | 
 |  | 
 |   /*  ===================================================================== */ | 
 |  | 
 |   /*     .. Parameters .. */ | 
 |   /*     .. */ | 
 |   /*     .. Local Scalars .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Functions .. */ | 
 |   /*     .. */ | 
 |   /*     .. External Subroutines .. */ | 
 |   /*     .. */ | 
 |   /*     .. Intrinsic Functions .. */ | 
 |   /*     .. */ | 
 |  | 
 |   /*     Test the input parameters. */ | 
 |  | 
 |   /* Parameter adjustments */ | 
 |   --y; | 
 |   --x; | 
 |   --ap; | 
 |  | 
 |   /* Function Body */ | 
 |   info = 0; | 
 |   if (!lsame_(uplo, "U") && !lsame_(uplo, "L")) { | 
 |     info = 1; | 
 |   } else if (*n < 0) { | 
 |     info = 2; | 
 |   } else if (*incx == 0) { | 
 |     info = 6; | 
 |   } else if (*incy == 0) { | 
 |     info = 9; | 
 |   } | 
 |   if (info != 0) { | 
 |     xerbla_("ZHPMV ", &info); | 
 |     return; | 
 |   } | 
 |  | 
 |   /*     Quick return if possible. */ | 
 |  | 
 |   if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. && beta->i == 0.))) { | 
 |     return; | 
 |   } | 
 |  | 
 |   /*     Set up the start points in  X  and  Y. */ | 
 |  | 
 |   if (*incx > 0) { | 
 |     kx = 1; | 
 |   } else { | 
 |     kx = 1 - (*n - 1) * *incx; | 
 |   } | 
 |   if (*incy > 0) { | 
 |     ky = 1; | 
 |   } else { | 
 |     ky = 1 - (*n - 1) * *incy; | 
 |   } | 
 |  | 
 |   /*     Start the operations. In this version the elements of the array AP */ | 
 |   /*     are accessed sequentially with one pass through AP. */ | 
 |  | 
 |   /*     First form  y := beta*y. */ | 
 |  | 
 |   if (beta->r != 1. || beta->i != 0.) { | 
 |     if (*incy == 1) { | 
 |       if (beta->r == 0. && beta->i == 0.) { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = i__; | 
 |           y[i__2].r = 0., y[i__2].i = 0.; | 
 |           /* L10: */ | 
 |         } | 
 |       } else { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = i__; | 
 |           i__3 = i__; | 
 |           z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r; | 
 |           y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |           /* L20: */ | 
 |         } | 
 |       } | 
 |     } else { | 
 |       iy = ky; | 
 |       if (beta->r == 0. && beta->i == 0.) { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = iy; | 
 |           y[i__2].r = 0., y[i__2].i = 0.; | 
 |           iy += *incy; | 
 |           /* L30: */ | 
 |         } | 
 |       } else { | 
 |         i__1 = *n; | 
 |         for (i__ = 1; i__ <= i__1; ++i__) { | 
 |           i__2 = iy; | 
 |           i__3 = iy; | 
 |           z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i, z__1.i = beta->r * y[i__3].i + beta->i * y[i__3].r; | 
 |           y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |           iy += *incy; | 
 |           /* L40: */ | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   if (alpha->r == 0. && alpha->i == 0.) { | 
 |     return; | 
 |   } | 
 |   kk = 1; | 
 |   if (lsame_(uplo, "U")) { | 
 |     /*        Form  y  when AP contains the upper triangle. */ | 
 |  | 
 |     if (*incx == 1 && *incy == 1) { | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__2 = j; | 
 |         z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
 |         temp1.r = z__1.r, temp1.i = z__1.i; | 
 |         temp2.r = 0., temp2.i = 0.; | 
 |         k = kk; | 
 |         i__2 = j - 1; | 
 |         for (i__ = 1; i__ <= i__2; ++i__) { | 
 |           i__3 = i__; | 
 |           i__4 = i__; | 
 |           i__5 = k; | 
 |           z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r; | 
 |           z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | 
 |           y[i__3].r = z__1.r, y[i__3].i = z__1.i; | 
 |           d_cnjg(&z__3, &ap[k]); | 
 |           i__3 = i__; | 
 |           z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r; | 
 |           z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | 
 |           temp2.r = z__1.r, temp2.i = z__1.i; | 
 |           ++k; | 
 |           /* L50: */ | 
 |         } | 
 |         i__2 = j; | 
 |         i__3 = j; | 
 |         i__4 = kk + j - 1; | 
 |         d__1 = ap[i__4].r; | 
 |         z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; | 
 |         z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; | 
 |         z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         kk += j; | 
 |         /* L60: */ | 
 |       } | 
 |     } else { | 
 |       jx = kx; | 
 |       jy = ky; | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__2 = jx; | 
 |         z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
 |         temp1.r = z__1.r, temp1.i = z__1.i; | 
 |         temp2.r = 0., temp2.i = 0.; | 
 |         ix = kx; | 
 |         iy = ky; | 
 |         i__2 = kk + j - 2; | 
 |         for (k = kk; k <= i__2; ++k) { | 
 |           i__3 = iy; | 
 |           i__4 = iy; | 
 |           i__5 = k; | 
 |           z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r; | 
 |           z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | 
 |           y[i__3].r = z__1.r, y[i__3].i = z__1.i; | 
 |           d_cnjg(&z__3, &ap[k]); | 
 |           i__3 = ix; | 
 |           z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r; | 
 |           z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | 
 |           temp2.r = z__1.r, temp2.i = z__1.i; | 
 |           ix += *incx; | 
 |           iy += *incy; | 
 |           /* L70: */ | 
 |         } | 
 |         i__2 = jy; | 
 |         i__3 = jy; | 
 |         i__4 = kk + j - 1; | 
 |         d__1 = ap[i__4].r; | 
 |         z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i; | 
 |         z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i; | 
 |         z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         jx += *incx; | 
 |         jy += *incy; | 
 |         kk += j; | 
 |         /* L80: */ | 
 |       } | 
 |     } | 
 |   } else { | 
 |     /*        Form  y  when AP contains the lower triangle. */ | 
 |  | 
 |     if (*incx == 1 && *incy == 1) { | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__2 = j; | 
 |         z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
 |         temp1.r = z__1.r, temp1.i = z__1.i; | 
 |         temp2.r = 0., temp2.i = 0.; | 
 |         i__2 = j; | 
 |         i__3 = j; | 
 |         i__4 = kk; | 
 |         d__1 = ap[i__4].r; | 
 |         z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; | 
 |         z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         k = kk + 1; | 
 |         i__2 = *n; | 
 |         for (i__ = j + 1; i__ <= i__2; ++i__) { | 
 |           i__3 = i__; | 
 |           i__4 = i__; | 
 |           i__5 = k; | 
 |           z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r; | 
 |           z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | 
 |           y[i__3].r = z__1.r, y[i__3].i = z__1.i; | 
 |           d_cnjg(&z__3, &ap[k]); | 
 |           i__3 = i__; | 
 |           z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r; | 
 |           z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | 
 |           temp2.r = z__1.r, temp2.i = z__1.i; | 
 |           ++k; | 
 |           /* L90: */ | 
 |         } | 
 |         i__2 = j; | 
 |         i__3 = j; | 
 |         z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         kk += *n - j + 1; | 
 |         /* L100: */ | 
 |       } | 
 |     } else { | 
 |       jx = kx; | 
 |       jy = ky; | 
 |       i__1 = *n; | 
 |       for (j = 1; j <= i__1; ++j) { | 
 |         i__2 = jx; | 
 |         z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2].r; | 
 |         temp1.r = z__1.r, temp1.i = z__1.i; | 
 |         temp2.r = 0., temp2.i = 0.; | 
 |         i__2 = jy; | 
 |         i__3 = jy; | 
 |         i__4 = kk; | 
 |         d__1 = ap[i__4].r; | 
 |         z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i; | 
 |         z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         ix = jx; | 
 |         iy = jy; | 
 |         i__2 = kk + *n - j; | 
 |         for (k = kk + 1; k <= i__2; ++k) { | 
 |           ix += *incx; | 
 |           iy += *incy; | 
 |           i__3 = iy; | 
 |           i__4 = iy; | 
 |           i__5 = k; | 
 |           z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i, z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5].r; | 
 |           z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i; | 
 |           y[i__3].r = z__1.r, y[i__3].i = z__1.i; | 
 |           d_cnjg(&z__3, &ap[k]); | 
 |           i__3 = ix; | 
 |           z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i = z__3.r * x[i__3].i + z__3.i * x[i__3].r; | 
 |           z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i; | 
 |           temp2.r = z__1.r, temp2.i = z__1.i; | 
 |           /* L110: */ | 
 |         } | 
 |         i__2 = jy; | 
 |         i__3 = jy; | 
 |         z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i = alpha->r * temp2.i + alpha->i * temp2.r; | 
 |         z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i; | 
 |         y[i__2].r = z__1.r, y[i__2].i = z__1.i; | 
 |         jx += *incx; | 
 |         jy += *incy; | 
 |         kk += *n - j + 1; | 
 |         /* L120: */ | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   /*     End of ZHPMV . */ | 
 |  | 
 | } /* zhpmv_ */ |