|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define TEST_ENABLE_TEMPORARY_TRACKING | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Cholesky> | 
|  | #include <Eigen/QR> | 
|  | #include "solverbase.h" | 
|  |  | 
|  | template <typename MatrixType, int UpLo> | 
|  | typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { | 
|  | if (m.cols() == 0) return typename MatrixType::RealScalar(0); | 
|  | MatrixType symm = m.template selfadjointView<UpLo>(); | 
|  | return symm.cwiseAbs().colwise().sum().maxCoeff(); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType, template <typename, int> class CholType> | 
|  | void test_chol_update(const MatrixType& symm) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | MatrixType symmLo = symm.template triangularView<Lower>(); | 
|  | MatrixType symmUp = symm.template triangularView<Upper>(); | 
|  | MatrixType symmCpy = symm; | 
|  |  | 
|  | CholType<MatrixType, Lower> chollo(symmLo); | 
|  | CholType<MatrixType, Upper> cholup(symmUp); | 
|  |  | 
|  | for (int k = 0; k < 10; ++k) { | 
|  | VectorType vec = VectorType::Random(symm.rows()); | 
|  | RealScalar sigma = internal::random<RealScalar>(); | 
|  | symmCpy += sigma * vec * vec.adjoint(); | 
|  |  | 
|  | // we are doing some downdates, so it might be the case that the matrix is not SPD anymore | 
|  | CholType<MatrixType, Lower> chol(symmCpy); | 
|  | if (chol.info() != Success) break; | 
|  |  | 
|  | chollo.rankUpdate(vec, sigma); | 
|  | VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix()); | 
|  |  | 
|  | cholup.rankUpdate(vec, sigma); | 
|  | VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void cholesky(const MatrixType& m) { | 
|  | /* this test covers the following files: | 
|  | LLT.h LDLT.h | 
|  | */ | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | MatrixType a0 = MatrixType::Random(rows, cols); | 
|  | VectorType vecB = VectorType::Random(rows), vecX(rows); | 
|  | MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); | 
|  | SquareMatrixType symm = a0 * a0.adjoint(); | 
|  | // let's make sure the matrix is not singular or near singular | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | MatrixType a1 = MatrixType::Random(rows, cols); | 
|  | symm += a1 * a1.adjoint(); | 
|  | } | 
|  |  | 
|  | { | 
|  | STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Lower>::StorageIndex, int>::value)); | 
|  | STATIC_CHECK((internal::is_same<typename LLT<MatrixType, Upper>::StorageIndex, int>::value)); | 
|  |  | 
|  | SquareMatrixType symmUp = symm.template triangularView<Upper>(); | 
|  | SquareMatrixType symmLo = symm.template triangularView<Lower>(); | 
|  |  | 
|  | LLT<SquareMatrixType, Lower> chollo(symmLo); | 
|  | VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); | 
|  |  | 
|  | check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1); | 
|  | check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows); | 
|  |  | 
|  | const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows, cols)); | 
|  | RealScalar rcond = | 
|  | (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); | 
|  | RealScalar rcond_est = chollo.rcond(); | 
|  | // Verify that the estimated condition number is within a factor of 10 of the | 
|  | // truth. | 
|  | VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); | 
|  |  | 
|  | // test the upper mode | 
|  | LLT<SquareMatrixType, Upper> cholup(symmUp); | 
|  | VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); | 
|  | vecX = cholup.solve(vecB); | 
|  | VERIFY_IS_APPROX(symm * vecX, vecB); | 
|  | matX = cholup.solve(matB); | 
|  | VERIFY_IS_APPROX(symm * matX, matB); | 
|  |  | 
|  | // Verify that the estimated condition number is within a factor of 10 of the | 
|  | // truth. | 
|  | const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows, cols)); | 
|  | rcond = | 
|  | (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); | 
|  | rcond_est = cholup.rcond(); | 
|  | VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); | 
|  |  | 
|  | MatrixType neg = -symmLo; | 
|  | chollo.compute(neg); | 
|  | VERIFY(neg.size() == 0 || chollo.info() == NumericalIssue); | 
|  |  | 
|  | VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU())); | 
|  | VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); | 
|  | VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); | 
|  | VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); | 
|  |  | 
|  | // test some special use cases of SelfCwiseBinaryOp: | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols); | 
|  | m2 = m1; | 
|  | m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB); | 
|  | VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); | 
|  | m2 = m1; | 
|  | m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB); | 
|  | VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); | 
|  | m2 = m1; | 
|  | m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB); | 
|  | VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB)); | 
|  | m2 = m1; | 
|  | m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB); | 
|  | VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB)); | 
|  | } | 
|  |  | 
|  | // LDLT | 
|  | { | 
|  | STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Lower>::StorageIndex, int>::value)); | 
|  | STATIC_CHECK((internal::is_same<typename LDLT<MatrixType, Upper>::StorageIndex, int>::value)); | 
|  |  | 
|  | int sign = internal::random<int>() % 2 ? 1 : -1; | 
|  |  | 
|  | if (sign == -1) { | 
|  | symm = -symm;  // test a negative matrix | 
|  | } | 
|  |  | 
|  | SquareMatrixType symmUp = symm.template triangularView<Upper>(); | 
|  | SquareMatrixType symmLo = symm.template triangularView<Lower>(); | 
|  |  | 
|  | LDLT<SquareMatrixType, Lower> ldltlo(symmLo); | 
|  | VERIFY(ldltlo.info() == Success); | 
|  | VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); | 
|  |  | 
|  | check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1); | 
|  | check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows); | 
|  |  | 
|  | const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows, cols)); | 
|  | RealScalar rcond = | 
|  | (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); | 
|  | RealScalar rcond_est = ldltlo.rcond(); | 
|  | // Verify that the estimated condition number is within a factor of 10 of the | 
|  | // truth. | 
|  | VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); | 
|  |  | 
|  | LDLT<SquareMatrixType, Upper> ldltup(symmUp); | 
|  | VERIFY(ldltup.info() == Success); | 
|  | VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); | 
|  | vecX = ldltup.solve(vecB); | 
|  | VERIFY_IS_APPROX(symm * vecX, vecB); | 
|  | matX = ldltup.solve(matB); | 
|  | VERIFY_IS_APPROX(symm * matX, matB); | 
|  |  | 
|  | // Verify that the estimated condition number is within a factor of 10 of the | 
|  | // truth. | 
|  | const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows, cols)); | 
|  | rcond = | 
|  | (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); | 
|  | rcond_est = ldltup.rcond(); | 
|  | VERIFY(rcond_est >= rcond / 10 && rcond_est <= rcond * 10); | 
|  |  | 
|  | VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); | 
|  | VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); | 
|  | VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); | 
|  | VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL())); | 
|  |  | 
|  | if (MatrixType::RowsAtCompileTime == Dynamic) { | 
|  | // note : each inplace permutation requires a small temporary vector (mask) | 
|  |  | 
|  | // check inplace solve | 
|  | matX = matB; | 
|  | VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0); | 
|  | VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval()); | 
|  |  | 
|  | matX = matB; | 
|  | VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0); | 
|  | VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval()); | 
|  | } | 
|  |  | 
|  | // restore | 
|  | if (sign == -1) symm = -symm; | 
|  |  | 
|  | // check matrices coming from linear constraints with Lagrange multipliers | 
|  | if (rows >= 3) { | 
|  | SquareMatrixType A = symm; | 
|  | Index c = internal::random<Index>(0, rows - 2); | 
|  | A.bottomRightCorner(c, c).setZero(); | 
|  | // Make sure a solution exists: | 
|  | vecX.setRandom(); | 
|  | vecB = A * vecX; | 
|  | vecX.setZero(); | 
|  | ldltlo.compute(A); | 
|  | VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | 
|  | vecX = ldltlo.solve(vecB); | 
|  | VERIFY_IS_APPROX(A * vecX, vecB); | 
|  | } | 
|  |  | 
|  | // check non-full rank matrices | 
|  | if (rows >= 3) { | 
|  | Index r = internal::random<Index>(1, rows - 1); | 
|  | Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, r); | 
|  | SquareMatrixType A = a * a.adjoint(); | 
|  | // Make sure a solution exists: | 
|  | vecX.setRandom(); | 
|  | vecB = A * vecX; | 
|  | vecX.setZero(); | 
|  | ldltlo.compute(A); | 
|  | VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | 
|  | vecX = ldltlo.solve(vecB); | 
|  | VERIFY_IS_APPROX(A * vecX, vecB); | 
|  | } | 
|  |  | 
|  | // check matrices with a wide spectrum | 
|  | if (rows >= 3) { | 
|  | using std::pow; | 
|  | using std::sqrt; | 
|  | RealScalar s = (std::min)(16, std::numeric_limits<RealScalar>::max_exponent10 / 8); | 
|  | Matrix<Scalar, Dynamic, Dynamic> a = Matrix<Scalar, Dynamic, Dynamic>::Random(rows, rows); | 
|  | Matrix<RealScalar, Dynamic, 1> d = Matrix<RealScalar, Dynamic, 1>::Random(rows); | 
|  | for (Index k = 0; k < rows; ++k) d(k) = d(k) * pow(RealScalar(10), internal::random<RealScalar>(-s, s)); | 
|  | SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); | 
|  | // Make sure a solution exists: | 
|  | vecX.setRandom(); | 
|  | vecB = A * vecX; | 
|  | vecX.setZero(); | 
|  | ldltlo.compute(A); | 
|  | VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); | 
|  | vecX = ldltlo.solve(vecB); | 
|  |  | 
|  | if (ldltlo.vectorD().real().cwiseAbs().minCoeff() > RealScalar(0)) { | 
|  | VERIFY_IS_APPROX(A * vecX, vecB); | 
|  | } else { | 
|  | RealScalar large_tol = sqrt(test_precision<RealScalar>()); | 
|  | VERIFY((A * vecX).isApprox(vecB, large_tol)); | 
|  |  | 
|  | ++g_test_level; | 
|  | VERIFY_IS_APPROX(A * vecX, vecB); | 
|  | --g_test_level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // update/downdate | 
|  | CALL_SUBTEST((test_chol_update<SquareMatrixType, LLT>(symm))); | 
|  | CALL_SUBTEST((test_chol_update<SquareMatrixType, LDLT>(symm))); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void cholesky_cplx(const MatrixType& m) { | 
|  | // classic test | 
|  | cholesky(m); | 
|  |  | 
|  | // test mixing real/scalar types | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | RealMatrixType a0 = RealMatrixType::Random(rows, cols); | 
|  | VectorType vecB = VectorType::Random(rows), vecX(rows); | 
|  | MatrixType matB = MatrixType::Random(rows, cols), matX(rows, cols); | 
|  | RealMatrixType symm = a0 * a0.adjoint(); | 
|  | // let's make sure the matrix is not singular or near singular | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | RealMatrixType a1 = RealMatrixType::Random(rows, cols); | 
|  | symm += a1 * a1.adjoint(); | 
|  | } | 
|  |  | 
|  | { | 
|  | RealMatrixType symmLo = symm.template triangularView<Lower>(); | 
|  |  | 
|  | LLT<RealMatrixType, Lower> chollo(symmLo); | 
|  | VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); | 
|  |  | 
|  | check_solverbase<VectorType, VectorType>(symm, chollo, rows, rows, 1); | 
|  | // check_solverbase<MatrixType, MatrixType>(symm, chollo, rows, cols, rows); | 
|  | } | 
|  |  | 
|  | // LDLT | 
|  | { | 
|  | int sign = internal::random<int>() % 2 ? 1 : -1; | 
|  |  | 
|  | if (sign == -1) { | 
|  | symm = -symm;  // test a negative matrix | 
|  | } | 
|  |  | 
|  | RealMatrixType symmLo = symm.template triangularView<Lower>(); | 
|  |  | 
|  | LDLT<RealMatrixType, Lower> ldltlo(symmLo); | 
|  | VERIFY(ldltlo.info() == Success); | 
|  | VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); | 
|  |  | 
|  | check_solverbase<VectorType, VectorType>(symm, ldltlo, rows, rows, 1); | 
|  | // check_solverbase<MatrixType, MatrixType>(symm, ldltlo, rows, cols, rows); | 
|  | } | 
|  | } | 
|  |  | 
|  | // regression test for bug 241 | 
|  | template <typename MatrixType> | 
|  | void cholesky_bug241(const MatrixType& m) { | 
|  | eigen_assert(m.rows() == 2 && m.cols() == 2); | 
|  |  | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; | 
|  |  | 
|  | MatrixType matA; | 
|  | matA << 1, 1, 1, 1; | 
|  | VectorType vecB; | 
|  | vecB << 1, 1; | 
|  | VectorType vecX = matA.ldlt().solve(vecB); | 
|  | VERIFY_IS_APPROX(matA * vecX, vecB); | 
|  | } | 
|  |  | 
|  | // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal. | 
|  | // This test checks that LDLT reports correctly that matrix is indefinite. | 
|  | // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736 | 
|  | template <typename MatrixType> | 
|  | void cholesky_definiteness(const MatrixType& m) { | 
|  | eigen_assert(m.rows() == 2 && m.cols() == 2); | 
|  | MatrixType mat; | 
|  | LDLT<MatrixType> ldlt(2); | 
|  |  | 
|  | { | 
|  | mat << 1, 0, 0, -1; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == Success); | 
|  | VERIFY(!ldlt.isNegative()); | 
|  | VERIFY(!ldlt.isPositive()); | 
|  | VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | { | 
|  | mat << 1, 2, 2, 1; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == Success); | 
|  | VERIFY(!ldlt.isNegative()); | 
|  | VERIFY(!ldlt.isPositive()); | 
|  | VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | { | 
|  | mat << 0, 0, 0, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == Success); | 
|  | VERIFY(ldlt.isNegative()); | 
|  | VERIFY(ldlt.isPositive()); | 
|  | VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | { | 
|  | mat << 0, 0, 0, 1; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == Success); | 
|  | VERIFY(!ldlt.isNegative()); | 
|  | VERIFY(ldlt.isPositive()); | 
|  | VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | { | 
|  | mat << -1, 0, 0, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == Success); | 
|  | VERIFY(ldlt.isNegative()); | 
|  | VERIFY(!ldlt.isPositive()); | 
|  | VERIFY_IS_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename> | 
|  | void cholesky_faillure_cases() { | 
|  | MatrixXd mat; | 
|  | LDLT<MatrixXd> ldlt; | 
|  |  | 
|  | { | 
|  | mat.resize(2, 2); | 
|  | mat << 0, 1, 1, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | VERIFY(ldlt.info() == NumericalIssue); | 
|  | } | 
|  | #if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2) | 
|  | { | 
|  | mat.resize(3, 3); | 
|  | mat << -1, -3, 3, -3, -8.9999999999999999999, 1, 3, 1, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == NumericalIssue); | 
|  | VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | #endif | 
|  | { | 
|  | mat.resize(3, 3); | 
|  | mat << 1, 2, 3, 2, 4, 1, 3, 1, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == NumericalIssue); | 
|  | VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  |  | 
|  | { | 
|  | mat.resize(8, 8); | 
|  | mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0, 0, 4.24667, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.2, 0, -0.1, 0, 0, 0, 0, 2.00333, | 
|  | 0, 8.49333, 0, 2.00333, 0, 0, 0, 0, -0.1, 0, 0.1, 0, 0, 1, 0, 0, 0, 2.00333, 0, 4.24667, 0, 0, 1, 0, 0, 0, 0, 0, | 
|  | 0, 0, 0, 0, 0, 0, 1, 0, 0, 0; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == NumericalIssue); | 
|  | VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  |  | 
|  | // bug 1479 | 
|  | { | 
|  | mat.resize(4, 4); | 
|  | mat << 1, 2, 0, 1, 2, 4, 0, 2, 0, 0, 0, 1, 1, 2, 1, 1; | 
|  | ldlt.compute(mat); | 
|  | VERIFY(ldlt.info() == NumericalIssue); | 
|  | VERIFY_IS_NOT_APPROX(mat, ldlt.reconstructedMatrix()); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void cholesky_verify_assert() { | 
|  | MatrixType tmp; | 
|  |  | 
|  | LLT<MatrixType> llt; | 
|  | VERIFY_RAISES_ASSERT(llt.matrixL()) | 
|  | VERIFY_RAISES_ASSERT(llt.matrixU()) | 
|  | VERIFY_RAISES_ASSERT(llt.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(llt.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(llt.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(llt.solveInPlace(tmp)) | 
|  |  | 
|  | LDLT<MatrixType> ldlt; | 
|  | VERIFY_RAISES_ASSERT(ldlt.matrixL()) | 
|  | VERIFY_RAISES_ASSERT(ldlt.transpositionsP()) | 
|  | VERIFY_RAISES_ASSERT(ldlt.vectorD()) | 
|  | VERIFY_RAISES_ASSERT(ldlt.isPositive()) | 
|  | VERIFY_RAISES_ASSERT(ldlt.isNegative()) | 
|  | VERIFY_RAISES_ASSERT(ldlt.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(ldlt.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(ldlt.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(ldlt.solveInPlace(tmp)) | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cholesky) { | 
|  | int s = 0; | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(cholesky(Matrix<double, 1, 1>())); | 
|  | CALL_SUBTEST_3(cholesky(Matrix2d())); | 
|  | CALL_SUBTEST_3(cholesky_bug241(Matrix2d())); | 
|  | CALL_SUBTEST_3(cholesky_definiteness(Matrix2d())); | 
|  | CALL_SUBTEST_4(cholesky(Matrix3f())); | 
|  | CALL_SUBTEST_5(cholesky(Matrix4d())); | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE); | 
|  | CALL_SUBTEST_2(cholesky(MatrixXd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  |  | 
|  | s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 2); | 
|  | CALL_SUBTEST_6(cholesky_cplx(MatrixXcd(s, s))); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(s) | 
|  | } | 
|  | // empty matrix, regression test for Bug 785: | 
|  | CALL_SUBTEST_2(cholesky(MatrixXd(0, 0))); | 
|  |  | 
|  | // This does not work yet: | 
|  | // CALL_SUBTEST_2( cholesky(Matrix<double,0,0>()) ); | 
|  |  | 
|  | CALL_SUBTEST_4(cholesky_verify_assert<Matrix3f>()); | 
|  | CALL_SUBTEST_7(cholesky_verify_assert<Matrix3d>()); | 
|  | CALL_SUBTEST_8(cholesky_verify_assert<MatrixXf>()); | 
|  | CALL_SUBTEST_2(cholesky_verify_assert<MatrixXd>()); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_9(LLT<MatrixXf>(10)); | 
|  | CALL_SUBTEST_9(LDLT<MatrixXf>(10)); | 
|  |  | 
|  | CALL_SUBTEST_2(cholesky_faillure_cases<void>()); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) | 
|  | } |