|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #if EIGEN_MAX_ALIGN_BYTES > 0 | 
|  | #define ALIGNMENT EIGEN_MAX_ALIGN_BYTES | 
|  | #else | 
|  | #define ALIGNMENT 1 | 
|  | #endif | 
|  |  | 
|  | typedef Matrix<float, 16, 1> Vector16f; | 
|  | typedef Matrix<float, 8, 1> Vector8f; | 
|  |  | 
|  | void check_handmade_aligned_malloc() { | 
|  | // Hand-make alignment needs at least sizeof(void*) to store the offset. | 
|  | constexpr int alignment = (std::max<int>)(EIGEN_DEFAULT_ALIGN_BYTES, sizeof(void *)); | 
|  |  | 
|  | for (int i = 1; i < 1000; i++) { | 
|  | char *p = (char *)internal::handmade_aligned_malloc(i, alignment); | 
|  | VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); | 
|  | // if the buffer is wrongly allocated this will give a bad write --> check with valgrind | 
|  | for (int j = 0; j < i; j++) p[j] = 0; | 
|  | internal::handmade_aligned_free(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | void check_aligned_malloc() { | 
|  | for (int i = ALIGNMENT; i < 1000; i++) { | 
|  | char *p = (char *)internal::aligned_malloc(i); | 
|  | VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); | 
|  | // if the buffer is wrongly allocated this will give a bad write --> check with valgrind | 
|  | for (int j = 0; j < i; j++) p[j] = 0; | 
|  | internal::aligned_free(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | void check_aligned_new() { | 
|  | for (int i = ALIGNMENT; i < 1000; i++) { | 
|  | float *p = internal::aligned_new<float>(i); | 
|  | VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); | 
|  | // if the buffer is wrongly allocated this will give a bad write --> check with valgrind | 
|  | for (int j = 0; j < i; j++) p[j] = 0; | 
|  | internal::aligned_delete(p, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void check_aligned_stack_alloc() { | 
|  | for (int i = ALIGNMENT; i < 400; i++) { | 
|  | ei_declare_aligned_stack_constructed_variable(float, p, i, 0); | 
|  | VERIFY(std::uintptr_t(p) % ALIGNMENT == 0); | 
|  | // if the buffer is wrongly allocated this will give a bad write --> check with valgrind | 
|  | for (int j = 0; j < i; j++) p[j] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // test compilation with both a struct and a class... | 
|  | struct MyStruct { | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
|  | char dummychar; | 
|  | Vector16f avec; | 
|  | }; | 
|  |  | 
|  | class MyClassA { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW | 
|  | char dummychar; | 
|  | Vector16f avec; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | void check_dynaligned() { | 
|  | // TODO have to be updated once we support multiple alignment values | 
|  | if (T::SizeAtCompileTime % ALIGNMENT == 0) { | 
|  | T *obj = new T; | 
|  | VERIFY(T::NeedsToAlign == 1); | 
|  | VERIFY(std::uintptr_t(obj) % ALIGNMENT == 0); | 
|  | delete obj; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | void check_custom_new_delete() { | 
|  | { | 
|  | T *t = new T; | 
|  | delete t; | 
|  | } | 
|  |  | 
|  | { | 
|  | std::size_t N = internal::random<std::size_t>(1, 10); | 
|  | T *t = new T[N]; | 
|  | delete[] t; | 
|  | } | 
|  |  | 
|  | #if EIGEN_MAX_ALIGN_BYTES > 0 && (!EIGEN_HAS_CXX17_OVERALIGN) | 
|  | { | 
|  | T *t = static_cast<T *>((T::operator new)(sizeof(T))); | 
|  | (T::operator delete)(t, sizeof(T)); | 
|  | } | 
|  |  | 
|  | { | 
|  | T *t = static_cast<T *>((T::operator new)(sizeof(T))); | 
|  | (T::operator delete)(t); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(dynalloc) { | 
|  | // low level dynamic memory allocation | 
|  | CALL_SUBTEST(check_handmade_aligned_malloc()); | 
|  | CALL_SUBTEST(check_aligned_malloc()); | 
|  | CALL_SUBTEST(check_aligned_new()); | 
|  | CALL_SUBTEST(check_aligned_stack_alloc()); | 
|  |  | 
|  | for (int i = 0; i < g_repeat * 100; ++i) { | 
|  | CALL_SUBTEST(check_custom_new_delete<Vector4f>()); | 
|  | CALL_SUBTEST(check_custom_new_delete<Vector2f>()); | 
|  | CALL_SUBTEST(check_custom_new_delete<Matrix4f>()); | 
|  | CALL_SUBTEST(check_custom_new_delete<MatrixXi>()); | 
|  | } | 
|  |  | 
|  | // check static allocation, who knows ? | 
|  | #if EIGEN_MAX_STATIC_ALIGN_BYTES | 
|  | for (int i = 0; i < g_repeat * 100; ++i) { | 
|  | CALL_SUBTEST(check_dynaligned<Vector4f>()); | 
|  | CALL_SUBTEST(check_dynaligned<Vector2d>()); | 
|  | CALL_SUBTEST(check_dynaligned<Matrix4f>()); | 
|  | CALL_SUBTEST(check_dynaligned<Vector4d>()); | 
|  | CALL_SUBTEST(check_dynaligned<Vector4i>()); | 
|  | CALL_SUBTEST(check_dynaligned<Vector8f>()); | 
|  | CALL_SUBTEST(check_dynaligned<Vector16f>()); | 
|  | } | 
|  |  | 
|  | { | 
|  | MyStruct foo0; | 
|  | VERIFY(std::uintptr_t(foo0.avec.data()) % ALIGNMENT == 0); | 
|  | MyClassA fooA; | 
|  | VERIFY(std::uintptr_t(fooA.avec.data()) % ALIGNMENT == 0); | 
|  | } | 
|  |  | 
|  | // dynamic allocation, single object | 
|  | for (int i = 0; i < g_repeat * 100; ++i) { | 
|  | MyStruct *foo0 = new MyStruct(); | 
|  | VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0); | 
|  | MyClassA *fooA = new MyClassA(); | 
|  | VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0); | 
|  | delete foo0; | 
|  | delete fooA; | 
|  | } | 
|  |  | 
|  | // dynamic allocation, array | 
|  | const int N = 10; | 
|  | for (int i = 0; i < g_repeat * 100; ++i) { | 
|  | MyStruct *foo0 = new MyStruct[N]; | 
|  | VERIFY(std::uintptr_t(foo0->avec.data()) % ALIGNMENT == 0); | 
|  | MyClassA *fooA = new MyClassA[N]; | 
|  | VERIFY(std::uintptr_t(fooA->avec.data()) % ALIGNMENT == 0); | 
|  | delete[] foo0; | 
|  | delete[] fooA; | 
|  | } | 
|  | #endif | 
|  | } |