|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  |  | 
|  | using namespace std; | 
|  |  | 
|  | // NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers. | 
|  | // It seems that it is not needed anymore, but let's keep it here, just in case... | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE void kill_extra_precision(T& /* x */) { | 
|  | // This one worked but triggered a warning: | 
|  | /* eigen_assert((void*)(&x) != (void*)0); */ | 
|  | // An alternative could be: | 
|  | /* volatile T tmp = x; */ | 
|  | /* x = tmp; */ | 
|  | } | 
|  |  | 
|  | template <typename BoxType> | 
|  | void alignedbox(const BoxType& box) { | 
|  | /* this test covers the following files: | 
|  | AlignedBox.h | 
|  | */ | 
|  | typedef typename BoxType::Scalar Scalar; | 
|  | typedef NumTraits<Scalar> ScalarTraits; | 
|  | typedef typename ScalarTraits::Real RealScalar; | 
|  | typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; | 
|  |  | 
|  | const Index dim = box.dim(); | 
|  |  | 
|  | VectorType p0 = VectorType::Random(dim) / Scalar(2); | 
|  | VectorType p1 = VectorType::Random(dim) / Scalar(2); | 
|  | while (p1 == p0) { | 
|  | p1 = VectorType::Random(dim) / Scalar(2); | 
|  | } | 
|  | RealScalar s1 = internal::random<RealScalar>(0, 1); | 
|  |  | 
|  | BoxType b0(dim); | 
|  | BoxType b1(VectorType::Random(dim), VectorType::Random(dim)); | 
|  | BoxType b2; | 
|  |  | 
|  | kill_extra_precision(b1); | 
|  | kill_extra_precision(p0); | 
|  | kill_extra_precision(p1); | 
|  |  | 
|  | b0.extend(p0); | 
|  | b0.extend(p1); | 
|  | VERIFY(b0.contains(p0 * s1 + (Scalar(1) - s1) * p1)); | 
|  | VERIFY(b0.contains(b0.center())); | 
|  | VERIFY_IS_APPROX(b0.center(), (p0 + p1) / Scalar(2)); | 
|  |  | 
|  | (b2 = b0).extend(b1); | 
|  | VERIFY(b2.contains(b0)); | 
|  | VERIFY(b2.contains(b1)); | 
|  | VERIFY_IS_APPROX(b2.clamp(b0), b0); | 
|  |  | 
|  | // intersection | 
|  | BoxType box1(VectorType::Random(dim)); | 
|  | box1.extend(VectorType::Random(dim)); | 
|  | BoxType box2(VectorType::Random(dim)); | 
|  | box2.extend(VectorType::Random(dim)); | 
|  |  | 
|  | VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty()); | 
|  |  | 
|  | // alignment -- make sure there is no memory alignment assertion | 
|  | BoxType* bp0 = new BoxType(dim); | 
|  | BoxType* bp1 = new BoxType(dim); | 
|  | bp0->extend(*bp1); | 
|  | delete bp0; | 
|  | delete bp1; | 
|  |  | 
|  | // sampling | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | VectorType r = b0.sample(); | 
|  | VERIFY(b0.contains(r)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename BoxType> | 
|  | void alignedboxTranslatable(const BoxType& box) { | 
|  | typedef typename BoxType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; | 
|  | typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform; | 
|  | typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform; | 
|  |  | 
|  | alignedbox(box); | 
|  |  | 
|  | const VectorType Ones = VectorType::Ones(); | 
|  | const VectorType UnitX = VectorType::UnitX(); | 
|  | const Index dim = box.dim(); | 
|  |  | 
|  | // box((-1, -1, -1), (1, 1, 1)) | 
|  | BoxType a(-Ones, Ones); | 
|  |  | 
|  | VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2)); | 
|  |  | 
|  | BoxType b = a; | 
|  | VectorType translate = Ones; | 
|  | translate[0] = Scalar(2); | 
|  | b.translate(translate); | 
|  | // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2)) | 
|  |  | 
|  | VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2)); | 
|  | VERIFY_IS_APPROX((b.min)(), UnitX); | 
|  | VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX); | 
|  |  | 
|  | // Test transform | 
|  |  | 
|  | IsometryTransform tf = IsometryTransform::Identity(); | 
|  | tf.translation() = -translate; | 
|  |  | 
|  | BoxType c = b.transformed(tf); | 
|  | // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1)) | 
|  | VERIFY_IS_APPROX(c.sizes(), a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), (a.min)()); | 
|  | VERIFY_IS_APPROX((c.max)(), (a.max)()); | 
|  |  | 
|  | c.transform(tf); | 
|  | // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0)) | 
|  | VERIFY_IS_APPROX(c.sizes(), a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX); | 
|  | VERIFY_IS_APPROX((c.max)(), -UnitX); | 
|  |  | 
|  | // Scaling | 
|  |  | 
|  | AffineTransform atf = AffineTransform::Identity(); | 
|  | atf.scale(Scalar(3)); | 
|  | c.transform(atf); | 
|  | // scale by 3 -> box((-9, -6, -6), (-3, 0, 0)) | 
|  | VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3)); | 
|  | VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3)); | 
|  |  | 
|  | atf = AffineTransform::Identity(); | 
|  | atf.scale(Scalar(-3)); | 
|  | c.transform(atf); | 
|  | // scale by -3 -> box((27, 18, 18), (9, 0, 0)) | 
|  | VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9)); | 
|  | VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9)); | 
|  |  | 
|  | // Check identity transform within numerical precision. | 
|  | BoxType transformedC = c.transformed(IsometryTransform::Identity()); | 
|  | VERIFY_IS_APPROX(transformedC, c); | 
|  |  | 
|  | for (size_t i = 0; i < 10; ++i) { | 
|  | VectorType minCorner; | 
|  | VectorType maxCorner; | 
|  | for (Index d = 0; d < dim; ++d) { | 
|  | minCorner[d] = internal::random<Scalar>(-10, 10); | 
|  | maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); | 
|  | } | 
|  |  | 
|  | c = BoxType(minCorner, maxCorner); | 
|  |  | 
|  | translate = VectorType::Random(); | 
|  | c.translate(translate); | 
|  |  | 
|  | VERIFY_IS_APPROX((c.min)(), minCorner + translate); | 
|  | VERIFY_IS_APPROX((c.max)(), maxCorner + translate); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Rotation> | 
|  | Rotation rotate2D(Scalar angle) { | 
|  | return Rotation2D<Scalar>(angle); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Rotation> | 
|  | Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) { | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | return Rotation2D<NonInteger>(angle).toRotationMatrix().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Rotation> | 
|  | Rotation rotate3DZAxis(Scalar angle) { | 
|  | return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1)); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Rotation> | 
|  | Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) { | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).toRotationMatrix().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, typename Rotation> | 
|  | Rotation rotate4DZWAxis(Scalar angle) { | 
|  | Rotation result = Matrix<Scalar, 4, 4>::Identity(); | 
|  | result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix(); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | MatrixType randomRotationMatrix() { | 
|  | // algorithm from | 
|  | // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf | 
|  | const MatrixType rand = MatrixType::Random(); | 
|  | const MatrixType q = rand.householderQr().householderQ(); | 
|  | const JacobiSVD<MatrixType, ComputeFullU | ComputeFullV> svd(q); | 
|  | const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant(); | 
|  | MatrixType diag = rand.Identity(); | 
|  | diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det; | 
|  | const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose(); | 
|  | return rotation; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Dim> | 
|  | Matrix<Scalar, Dim, (1 << Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_) { | 
|  | Matrix<Scalar, Dim, (1 << Dim)> result; | 
|  | for (Index i = 0; i < (1 << Dim); ++i) { | 
|  | for (Index j = 0; j < Dim; ++j) result(j, i) = (i & (Index(1) << j)) ? min_(j) : max_(j); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | template <typename BoxType, typename Rotation> | 
|  | void alignedboxRotatable(const BoxType& box, | 
|  | Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) { | 
|  | alignedboxTranslatable(box); | 
|  |  | 
|  | typedef typename BoxType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; | 
|  | typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform; | 
|  | typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform; | 
|  |  | 
|  | const VectorType Zero = VectorType::Zero(); | 
|  | const VectorType Ones = VectorType::Ones(); | 
|  | const VectorType UnitX = VectorType::UnitX(); | 
|  | const VectorType UnitY = VectorType::UnitY(); | 
|  | // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions | 
|  | const VectorType UnitZ = Ones - UnitX - UnitY; | 
|  |  | 
|  | // in this kind of comments the 3D case values will be illustrated | 
|  | // box((-1, -1, -1), (1, 1, 1)) | 
|  | BoxType a(-Ones, Ones); | 
|  |  | 
|  | // to allow templating this test for both 2D and 3D cases, we always set all | 
|  | // but the first coordinate to the same value; so basically 3D case works as | 
|  | // if you were looking at the scene from top | 
|  |  | 
|  | VectorType minPoint = -2 * Ones; | 
|  | minPoint[0] = -3; | 
|  | VectorType maxPoint = Zero; | 
|  | maxPoint[0] = -1; | 
|  | BoxType c(minPoint, maxPoint); | 
|  | // box((-3, -2, -2), (-1, 0, 0)) | 
|  |  | 
|  | IsometryTransform tf2 = IsometryTransform::Identity(); | 
|  | // for some weird reason the following statement has to be put separate from | 
|  | // the following rotate call, otherwise precision problems arise... | 
|  | Rotation rot = rotate(NonInteger(EIGEN_PI)); | 
|  | tf2.rotate(rot); | 
|  |  | 
|  | c.transform(tf2); | 
|  | // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0)) | 
|  |  | 
|  | VERIFY_IS_APPROX(c.sizes(), a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2)); | 
|  | VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2)); | 
|  |  | 
|  | rot = rotate(NonInteger(EIGEN_PI / 2)); | 
|  | tf2.setIdentity(); | 
|  | tf2.rotate(rot); | 
|  |  | 
|  | c.transform(tf2); | 
|  | // rotate by 90 deg around origin ->  box((-2, 1, -2), (0, 3, 0)) | 
|  |  | 
|  | VERIFY_IS_APPROX(c.sizes(), a.sizes()); | 
|  | VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3)); | 
|  | VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3)); | 
|  |  | 
|  | // box((-1, -1, -1), (1, 1, 1)) | 
|  | AffineTransform atf = AffineTransform::Identity(); | 
|  | atf.linearExt()(0, 1) = Scalar(1); | 
|  | c = BoxType(-Ones, Ones); | 
|  | c.transform(atf); | 
|  | // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1)) | 
|  |  | 
|  | VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2)); | 
|  | VERIFY_IS_APPROX((c.min)(), -Ones - UnitX); | 
|  | VERIFY_IS_APPROX((c.max)(), Ones + UnitX); | 
|  | } | 
|  |  | 
|  | template <typename BoxType, typename Rotation> | 
|  | void alignedboxNonIntegralRotatable( | 
|  | const BoxType& box, Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/)) { | 
|  | alignedboxRotatable(box, rotate); | 
|  |  | 
|  | typedef typename BoxType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::NonInteger NonInteger; | 
|  | enum { Dim = BoxType::AmbientDimAtCompileTime }; | 
|  | typedef Matrix<Scalar, Dim, 1> VectorType; | 
|  | typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType; | 
|  | typedef Transform<Scalar, Dim, Isometry> IsometryTransform; | 
|  | typedef Transform<Scalar, Dim, Affine> AffineTransform; | 
|  |  | 
|  | const Index dim = box.dim(); | 
|  | const VectorType Zero = VectorType::Zero(); | 
|  | const VectorType Ones = VectorType::Ones(); | 
|  |  | 
|  | VectorType minPoint = -2 * Ones; | 
|  | minPoint[1] = 1; | 
|  | VectorType maxPoint = Zero; | 
|  | maxPoint[1] = 3; | 
|  | BoxType c(minPoint, maxPoint); | 
|  | // ((-2, 1, -2), (0, 3, 0)) | 
|  |  | 
|  | VectorType cornerBL = (c.min)(); | 
|  | VectorType cornerTR = (c.max)(); | 
|  | VectorType cornerBR = (c.min)(); | 
|  | cornerBR[0] = cornerTR[0]; | 
|  | VectorType cornerTL = (c.max)(); | 
|  | cornerTL[0] = cornerBL[0]; | 
|  |  | 
|  | NonInteger angle = NonInteger(EIGEN_PI / 3); | 
|  | Rotation rot = rotate(angle); | 
|  | IsometryTransform tf2; | 
|  | tf2.setIdentity(); | 
|  | tf2.rotate(rot); | 
|  |  | 
|  | c.transform(tf2); | 
|  | // rotate by 60 deg ->  box((-3.59, -1.23, -2), (-0.86, 1.5, 0)) | 
|  |  | 
|  | cornerBL = tf2 * cornerBL; | 
|  | cornerBR = tf2 * cornerBR; | 
|  | cornerTL = tf2 * cornerTL; | 
|  | cornerTR = tf2 * cornerTR; | 
|  |  | 
|  | VectorType minCorner = Ones * Scalar(-2); | 
|  | VectorType maxCorner = Zero; | 
|  | minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0])); | 
|  | maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0])); | 
|  | minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1])); | 
|  | maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1])); | 
|  |  | 
|  | for (Index d = 2; d < dim; ++d) VERIFY_IS_APPROX(c.sizes()[d], Scalar(2)); | 
|  |  | 
|  | VERIFY_IS_APPROX((c.min)(), minCorner); | 
|  | VERIFY_IS_APPROX((c.max)(), maxCorner); | 
|  |  | 
|  | VectorType minCornerValue = Ones * Scalar(-2); | 
|  | VectorType maxCornerValue = Zero; | 
|  | minCornerValue[0] = Scalar(Scalar(-sqrt(2 * 2 + 3 * 3)) * Scalar(cos(Scalar(atan(2.0 / 3.0)) - angle / 2))); | 
|  | minCornerValue[1] = Scalar(Scalar(-sqrt(1 * 1 + 2 * 2)) * Scalar(sin(Scalar(atan(2.0 / 1.0)) - angle / 2))); | 
|  | maxCornerValue[0] = Scalar(-sin(angle)); | 
|  | maxCornerValue[1] = Scalar(3 * cos(angle)); | 
|  | VERIFY_IS_APPROX((c.min)(), minCornerValue); | 
|  | VERIFY_IS_APPROX((c.max)(), maxCornerValue); | 
|  |  | 
|  | // randomized test - translate and rotate the box and compare to a box made of transformed vertices | 
|  | for (size_t i = 0; i < 10; ++i) { | 
|  | for (Index d = 0; d < dim; ++d) { | 
|  | minCorner[d] = internal::random<Scalar>(-10, 10); | 
|  | maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); | 
|  | } | 
|  |  | 
|  | c = BoxType(minCorner, maxCorner); | 
|  |  | 
|  | CornersType corners = boxGetCorners(minCorner, maxCorner); | 
|  |  | 
|  | typename AffineTransform::LinearMatrixType rotation = | 
|  | randomRotationMatrix<typename AffineTransform::LinearMatrixType>(); | 
|  |  | 
|  | tf2.setIdentity(); | 
|  | tf2.rotate(rotation); | 
|  | tf2.translate(VectorType::Random()); | 
|  |  | 
|  | c.transform(tf2); | 
|  | corners = tf2 * corners; | 
|  |  | 
|  | minCorner = corners.rowwise().minCoeff(); | 
|  | maxCorner = corners.rowwise().maxCoeff(); | 
|  |  | 
|  | VERIFY_IS_APPROX((c.min)(), minCorner); | 
|  | VERIFY_IS_APPROX((c.max)(), maxCorner); | 
|  | } | 
|  |  | 
|  | // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices | 
|  | for (size_t i = 0; i < 10; ++i) { | 
|  | for (Index d = 0; d < dim; ++d) { | 
|  | minCorner[d] = internal::random<Scalar>(-10, 10); | 
|  | maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10); | 
|  | } | 
|  |  | 
|  | c = BoxType(minCorner, maxCorner); | 
|  |  | 
|  | CornersType corners = boxGetCorners(minCorner, maxCorner); | 
|  |  | 
|  | AffineTransform atf = AffineTransform::Identity(); | 
|  | atf.linearExt() = AffineTransform::LinearPart::Random(); | 
|  | atf.translate(VectorType::Random()); | 
|  |  | 
|  | c.transform(atf); | 
|  | corners = atf * corners; | 
|  |  | 
|  | minCorner = corners.rowwise().minCoeff(); | 
|  | maxCorner = corners.rowwise().maxCoeff(); | 
|  |  | 
|  | VERIFY_IS_APPROX((c.min)(), minCorner); | 
|  | VERIFY_IS_APPROX((c.max)(), maxCorner); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename BoxType> | 
|  | void alignedboxCastTests(const BoxType& box) { | 
|  | // casting | 
|  | typedef typename BoxType::Scalar Scalar; | 
|  | typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType; | 
|  |  | 
|  | const Index dim = box.dim(); | 
|  |  | 
|  | VectorType p0 = VectorType::Random(dim); | 
|  | VectorType p1 = VectorType::Random(dim); | 
|  |  | 
|  | BoxType b0(dim); | 
|  |  | 
|  | b0.extend(p0); | 
|  | b0.extend(p1); | 
|  |  | 
|  | const int Dim = BoxType::AmbientDimAtCompileTime; | 
|  | typedef typename GetDifferentType<Scalar>::type OtherScalar; | 
|  | AlignedBox<OtherScalar, Dim> hp1f = b0.template cast<OtherScalar>(); | 
|  | VERIFY_IS_APPROX(hp1f.template cast<Scalar>(), b0); | 
|  | AlignedBox<Scalar, Dim> hp1d = b0.template cast<Scalar>(); | 
|  | VERIFY_IS_APPROX(hp1d.template cast<Scalar>(), b0); | 
|  | } | 
|  |  | 
|  | void specificTest1() { | 
|  | Vector2f m; | 
|  | m << -1.0f, -2.0f; | 
|  | Vector2f M; | 
|  | M << 1.0f, 5.0f; | 
|  |  | 
|  | typedef AlignedBox2f BoxType; | 
|  | BoxType box(m, M); | 
|  |  | 
|  | Vector2f sides = M - m; | 
|  | VERIFY_IS_APPROX(sides, box.sizes()); | 
|  | VERIFY_IS_APPROX(sides[1], box.sizes()[1]); | 
|  | VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff()); | 
|  | VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff()); | 
|  |  | 
|  | VERIFY_IS_APPROX(14.0f, box.volume()); | 
|  | VERIFY_IS_APPROX(53.0f, box.diagonal().squaredNorm()); | 
|  | VERIFY_IS_APPROX(std::sqrt(53.0f), box.diagonal().norm()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeft)); | 
|  | VERIFY_IS_APPROX(M, box.corner(BoxType::TopRight)); | 
|  | Vector2f bottomRight; | 
|  | bottomRight << M[0], m[1]; | 
|  | Vector2f topLeft; | 
|  | topLeft << m[0], M[1]; | 
|  | VERIFY_IS_APPROX(bottomRight, box.corner(BoxType::BottomRight)); | 
|  | VERIFY_IS_APPROX(topLeft, box.corner(BoxType::TopLeft)); | 
|  | } | 
|  |  | 
|  | void specificTest2() { | 
|  | Vector3i m; | 
|  | m << -1, -2, 0; | 
|  | Vector3i M; | 
|  | M << 1, 5, 3; | 
|  |  | 
|  | typedef AlignedBox3i BoxType; | 
|  | BoxType box(m, M); | 
|  |  | 
|  | Vector3i sides = M - m; | 
|  | VERIFY_IS_APPROX(sides, box.sizes()); | 
|  | VERIFY_IS_APPROX(sides[1], box.sizes()[1]); | 
|  | VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff()); | 
|  | VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff()); | 
|  |  | 
|  | VERIFY_IS_APPROX(42, box.volume()); | 
|  | VERIFY_IS_APPROX(62, box.diagonal().squaredNorm()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m, box.corner(BoxType::BottomLeftFloor)); | 
|  | VERIFY_IS_APPROX(M, box.corner(BoxType::TopRightCeil)); | 
|  | Vector3i bottomRightFloor; | 
|  | bottomRightFloor << M[0], m[1], m[2]; | 
|  | Vector3i topLeftFloor; | 
|  | topLeftFloor << m[0], M[1], m[2]; | 
|  | VERIFY_IS_APPROX(bottomRightFloor, box.corner(BoxType::BottomRightFloor)); | 
|  | VERIFY_IS_APPROX(topLeftFloor, box.corner(BoxType::TopLeftFloor)); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_alignedbox) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1((alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D))); | 
|  | CALL_SUBTEST_2(alignedboxCastTests(AlignedBox2f())); | 
|  |  | 
|  | CALL_SUBTEST_3((alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis))); | 
|  | CALL_SUBTEST_4(alignedboxCastTests(AlignedBox3f())); | 
|  |  | 
|  | CALL_SUBTEST_5((alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis))); | 
|  | CALL_SUBTEST_6(alignedboxCastTests(AlignedBox4d())); | 
|  |  | 
|  | CALL_SUBTEST_7(alignedboxTranslatable(AlignedBox1d())); | 
|  | CALL_SUBTEST_8(alignedboxCastTests(AlignedBox1d())); | 
|  |  | 
|  | CALL_SUBTEST_9(alignedboxTranslatable(AlignedBox1i())); | 
|  | CALL_SUBTEST_10((alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>))); | 
|  | CALL_SUBTEST_11( | 
|  | (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>))); | 
|  |  | 
|  | CALL_SUBTEST_14(alignedbox(AlignedBox<double, Dynamic>(4))); | 
|  | } | 
|  | CALL_SUBTEST_12(specificTest1()); | 
|  | CALL_SUBTEST_13(specificTest2()); | 
|  | } |