|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // Silence warnings about using the deprecated non-canonical .eulerAngles(), which are still being tested. | 
|  | #define EIGEN_NO_DEPRECATED_WARNING | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Geometry> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template <typename Scalar> | 
|  | void verify_euler(const Matrix<Scalar, 3, 1>& ea, int i, int j, int k) { | 
|  | typedef Matrix<Scalar, 3, 3> Matrix3; | 
|  | typedef Matrix<Scalar, 3, 1> Vector3; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  | const Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * | 
|  | AngleAxisx(ea[2], Vector3::Unit(k))); | 
|  |  | 
|  | // Test non-canonical eulerAngles | 
|  | { | 
|  | Vector3 eabis = m.eulerAngles(i, j, k); | 
|  | Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * | 
|  | AngleAxisx(eabis[2], Vector3::Unit(k))); | 
|  | VERIFY_IS_APPROX(m, mbis); | 
|  |  | 
|  | // approx_or_less_than does not work for 0 | 
|  | VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1))); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); | 
|  | } | 
|  |  | 
|  | // Test canonicalEulerAngles | 
|  | { | 
|  | Vector3 eabis = m.canonicalEulerAngles(i, j, k); | 
|  | Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * | 
|  | AngleAxisx(eabis[2], Vector3::Unit(k))); | 
|  | VERIFY_IS_APPROX(m, mbis); | 
|  |  | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[0]); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI)); | 
|  | if (i != k) { | 
|  | // Tait-Bryan sequence | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI / 2), eabis[1]); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI / 2)); | 
|  | } else { | 
|  | // Proper Euler sequence | 
|  | // approx_or_less_than does not work for 0 | 
|  | VERIFY(0 < eabis[1] || test_isMuchSmallerThan(eabis[1], Scalar(1))); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI)); | 
|  | } | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]); | 
|  | VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void check_all_var(const Matrix<Scalar, 3, 1>& ea) { | 
|  | auto verify_permutation = [](const Matrix<Scalar, 3, 1>& eap) { | 
|  | verify_euler(eap, 0, 1, 2); | 
|  | verify_euler(eap, 0, 1, 0); | 
|  | verify_euler(eap, 0, 2, 1); | 
|  | verify_euler(eap, 0, 2, 0); | 
|  |  | 
|  | verify_euler(eap, 1, 2, 0); | 
|  | verify_euler(eap, 1, 2, 1); | 
|  | verify_euler(eap, 1, 0, 2); | 
|  | verify_euler(eap, 1, 0, 1); | 
|  |  | 
|  | verify_euler(eap, 2, 0, 1); | 
|  | verify_euler(eap, 2, 0, 2); | 
|  | verify_euler(eap, 2, 1, 0); | 
|  | verify_euler(eap, 2, 1, 2); | 
|  | }; | 
|  |  | 
|  | int i, j, k; | 
|  | for (i = 0; i < 3; i++) | 
|  | for (j = 0; j < 3; j++) | 
|  | for (k = 0; k < 3; k++) { | 
|  | Matrix<Scalar, 3, 1> eap(ea(i), ea(j), ea(k)); | 
|  | verify_permutation(eap); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void eulerangles() { | 
|  | typedef Matrix<Scalar, 3, 3> Matrix3; | 
|  | typedef Matrix<Scalar, 3, 1> Vector3; | 
|  | typedef Array<Scalar, 3, 1> Array3; | 
|  | typedef Quaternion<Scalar> Quaternionx; | 
|  | typedef AngleAxis<Scalar> AngleAxisx; | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); | 
|  | Quaternionx q1; | 
|  | q1 = AngleAxisx(a, Vector3::Random().normalized()); | 
|  | Matrix3 m; | 
|  | m = q1; | 
|  |  | 
|  | Vector3 ea = m.eulerAngles(0, 1, 2); | 
|  | check_all_var(ea); | 
|  | ea = m.eulerAngles(0, 1, 0); | 
|  | check_all_var(ea); | 
|  |  | 
|  | // Check with purely random Quaternion: | 
|  | q1.coeffs() = Quaternionx::Coefficients::Random().normalized(); | 
|  | m = q1; | 
|  | ea = m.eulerAngles(0, 1, 2); | 
|  | check_all_var(ea); | 
|  | ea = m.eulerAngles(0, 1, 0); | 
|  | check_all_var(ea); | 
|  |  | 
|  | // Check with random angles in range [-pi:pi]x[-pi:pi]x[-pi:pi]. | 
|  | ea = Array3::Random() * Scalar(EIGEN_PI); | 
|  | check_all_var(ea); | 
|  |  | 
|  | auto test_with_some_zeros = [](const Vector3& eaz) { | 
|  | check_all_var(eaz); | 
|  | Vector3 ea_glz = eaz; | 
|  | ea_glz[0] = Scalar(0); | 
|  | check_all_var(ea_glz); | 
|  | ea_glz[0] = internal::random<Scalar>(-0.001, 0.001); | 
|  | check_all_var(ea_glz); | 
|  | ea_glz[2] = Scalar(0); | 
|  | check_all_var(ea_glz); | 
|  | ea_glz[2] = internal::random<Scalar>(-0.001, 0.001); | 
|  | check_all_var(ea_glz); | 
|  | }; | 
|  | // Check gimbal lock configurations and a bit noisy gimbal locks | 
|  | Vector3 ea_gl = ea; | 
|  | ea_gl[1] = EIGEN_PI / 2; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] = -EIGEN_PI / 2; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] = EIGEN_PI / 2; | 
|  | ea_gl[2] = ea_gl[0]; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] = -EIGEN_PI / 2; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_gl[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  |  | 
|  | // Similar to above, but with pi instead of pi/2 | 
|  | Vector3 ea_pi = ea; | 
|  | ea_pi[1] = EIGEN_PI; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] = -EIGEN_PI; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] = EIGEN_PI; | 
|  | ea_pi[2] = ea_pi[0]; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] = -EIGEN_PI; | 
|  | test_with_some_zeros(ea_gl); | 
|  | ea_pi[1] += internal::random<Scalar>(-0.001, 0.001); | 
|  | test_with_some_zeros(ea_gl); | 
|  |  | 
|  | ea[2] = ea[0] = internal::random<Scalar>(0, Scalar(EIGEN_PI)); | 
|  | check_all_var(ea); | 
|  |  | 
|  | ea[0] = ea[1] = internal::random<Scalar>(0, Scalar(EIGEN_PI)); | 
|  | check_all_var(ea); | 
|  |  | 
|  | ea[1] = 0; | 
|  | check_all_var(ea); | 
|  |  | 
|  | ea.head(2).setZero(); | 
|  | check_all_var(ea); | 
|  |  | 
|  | ea.setZero(); | 
|  | check_all_var(ea); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(geo_eulerangles) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(eulerangles<float>()); | 
|  | CALL_SUBTEST_2(eulerangles<double>()); | 
|  | } | 
|  | } |