|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template <typename MatrixType, typename JacobiScalar> | 
|  | void jacobi(const MatrixType& m = MatrixType()) { | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; | 
|  |  | 
|  | typedef Matrix<JacobiScalar, 2, 1> JacobiVector; | 
|  |  | 
|  | const MatrixType a(MatrixType::Random(rows, cols)); | 
|  |  | 
|  | JacobiVector v = JacobiVector::Random().normalized(); | 
|  | JacobiScalar c = v.x(), s = v.y(); | 
|  | JacobiRotation<JacobiScalar> rot(c, s); | 
|  |  | 
|  | { | 
|  | Index p = internal::random<Index>(0, rows - 1); | 
|  | Index q; | 
|  | do { | 
|  | q = internal::random<Index>(0, rows - 1); | 
|  | } while (q == p); | 
|  |  | 
|  | MatrixType b = a; | 
|  | b.applyOnTheLeft(p, q, rot); | 
|  | VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q)); | 
|  | VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q)); | 
|  | } | 
|  |  | 
|  | { | 
|  | Index p = internal::random<Index>(0, cols - 1); | 
|  | Index q; | 
|  | do { | 
|  | q = internal::random<Index>(0, cols - 1); | 
|  | } while (q == p); | 
|  |  | 
|  | MatrixType b = a; | 
|  | b.applyOnTheRight(p, q, rot); | 
|  | VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q)); | 
|  | VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q)); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(jacobi) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1((jacobi<Matrix3f, float>())); | 
|  | CALL_SUBTEST_2((jacobi<Matrix4d, double>())); | 
|  | CALL_SUBTEST_3((jacobi<Matrix4cf, float>())); | 
|  | CALL_SUBTEST_3((jacobi<Matrix4cf, std::complex<float> >())); | 
|  |  | 
|  | CALL_SUBTEST_1((jacobi<Matrix<float, 3, 3, RowMajor>, float>())); | 
|  | CALL_SUBTEST_2((jacobi<Matrix<double, 4, 4, RowMajor>, double>())); | 
|  | CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, float>())); | 
|  | CALL_SUBTEST_3((jacobi<Matrix<std::complex<float>, 4, 4, RowMajor>, std::complex<float> >())); | 
|  |  | 
|  | int r = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2), | 
|  | c = internal::random<int>(2, internal::random<int>(1, EIGEN_TEST_MAX_SIZE) / 2); | 
|  | CALL_SUBTEST_4((jacobi<MatrixXf, float>(MatrixXf(r, c)))); | 
|  | CALL_SUBTEST_5((jacobi<MatrixXcd, double>(MatrixXcd(r, c)))); | 
|  | CALL_SUBTEST_5((jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r, c)))); | 
|  | // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned | 
|  | // paths | 
|  | CALL_SUBTEST_6((jacobi<MatrixXcf, float>(MatrixXcf(r, c)))); | 
|  | CALL_SUBTEST_6((jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r, c)))); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(r); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(c); | 
|  | } | 
|  | } |