|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // discard stack allocation as that too bypasses malloc | 
|  | #define EIGEN_STACK_ALLOCATION_LIMIT 0 | 
|  | // heap allocation will raise an assert if enabled at runtime | 
|  | #define EIGEN_RUNTIME_NO_MALLOC | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/Cholesky> | 
|  | #include <Eigen/Eigenvalues> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/QR> | 
|  | #include <Eigen/SVD> | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void nomalloc(const MatrixType& m) { | 
|  | /* this test check no dynamic memory allocation are issued with fixed-size matrices | 
|  | */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | VERIFY_IS_APPROX((m1 + m2) * s1, s1 * m1 + s1 * m2); | 
|  | VERIFY_IS_APPROX((m1 + m2)(r, c), (m1(r, c)) + (m2(r, c))); | 
|  | VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0, 0, rows, cols)), (m1.array() * m1.array()).matrix()); | 
|  | VERIFY_IS_APPROX((m1 * m1.transpose()) * m2, m1 * (m1.transpose() * m2)); | 
|  |  | 
|  | m2.col(0).noalias() = m1 * m1.col(0); | 
|  | m2.col(0).noalias() -= m1.adjoint() * m1.col(0); | 
|  | m2.col(0).noalias() -= m1 * m1.row(0).adjoint(); | 
|  | m2.col(0).noalias() -= m1.adjoint() * m1.row(0).adjoint(); | 
|  |  | 
|  | m2.row(0).noalias() = m1.row(0) * m1; | 
|  | m2.row(0).noalias() -= m1.row(0) * m1.adjoint(); | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1; | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint(); | 
|  | VERIFY_IS_APPROX(m2, m2); | 
|  |  | 
|  | m2.col(0).noalias() = m1.template triangularView<Upper>() * m1.col(0); | 
|  | m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.col(0); | 
|  | m2.col(0).noalias() -= m1.template triangularView<Upper>() * m1.row(0).adjoint(); | 
|  | m2.col(0).noalias() -= m1.adjoint().template triangularView<Upper>() * m1.row(0).adjoint(); | 
|  |  | 
|  | m2.row(0).noalias() = m1.row(0) * m1.template triangularView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template triangularView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template triangularView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template triangularView<Upper>(); | 
|  | VERIFY_IS_APPROX(m2, m2); | 
|  |  | 
|  | m2.col(0).noalias() = m1.template selfadjointView<Upper>() * m1.col(0); | 
|  | m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.col(0); | 
|  | m2.col(0).noalias() -= m1.template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
|  | m2.col(0).noalias() -= m1.adjoint().template selfadjointView<Upper>() * m1.row(0).adjoint(); | 
|  |  | 
|  | m2.row(0).noalias() = m1.row(0) * m1.template selfadjointView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.row(0) * m1.adjoint().template selfadjointView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.template selfadjointView<Upper>(); | 
|  | m2.row(0).noalias() -= m1.col(0).adjoint() * m1.adjoint().template selfadjointView<Upper>(); | 
|  | VERIFY_IS_APPROX(m2, m2); | 
|  |  | 
|  | m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), -1); | 
|  | m2.template selfadjointView<Upper>().rankUpdate(m1.row(0), -1); | 
|  | m2.template selfadjointView<Lower>().rankUpdate(m1.col(0), m1.col(0));  // rank-2 | 
|  |  | 
|  | // The following fancy matrix-matrix products are not safe yet regarding static allocation | 
|  | m2.template selfadjointView<Lower>().rankUpdate(m1); | 
|  | m2 += m2.template triangularView<Upper>() * m1; | 
|  | m2.template triangularView<Upper>() = m2 * m2; | 
|  | m1 += m1.template selfadjointView<Lower>() * m2; | 
|  | VERIFY_IS_APPROX(m2, m2); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void ctms_decompositions() { | 
|  | const int maxSize = 16; | 
|  | const int size = 12; | 
|  |  | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> Matrix; | 
|  |  | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1, 0, maxSize, 1> Vector; | 
|  |  | 
|  | typedef Eigen::Matrix<std::complex<Scalar>, Eigen::Dynamic, Eigen::Dynamic, 0, maxSize, maxSize> ComplexMatrix; | 
|  |  | 
|  | const Matrix A(Matrix::Random(size, size)), B(Matrix::Random(size, size)); | 
|  | Matrix X(size, size); | 
|  | const ComplexMatrix complexA(ComplexMatrix::Random(size, size)); | 
|  | const Matrix saA = A.adjoint() * A; | 
|  | const Vector b(Vector::Random(size)); | 
|  | Vector x(size); | 
|  |  | 
|  | // Cholesky module | 
|  | Eigen::LLT<Matrix> LLT; | 
|  | LLT.compute(A); | 
|  | X = LLT.solve(B); | 
|  | x = LLT.solve(b); | 
|  | Eigen::LDLT<Matrix> LDLT; | 
|  | LDLT.compute(A); | 
|  | X = LDLT.solve(B); | 
|  | x = LDLT.solve(b); | 
|  |  | 
|  | // Eigenvalues module | 
|  | Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; | 
|  | hessDecomp.compute(complexA); | 
|  | Eigen::ComplexSchur<ComplexMatrix> cSchur(size); | 
|  | cSchur.compute(complexA); | 
|  | Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; | 
|  | cEigSolver.compute(complexA); | 
|  | Eigen::EigenSolver<Matrix> eigSolver; | 
|  | eigSolver.compute(A); | 
|  | Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); | 
|  | saEigSolver.compute(saA); | 
|  | Eigen::Tridiagonalization<Matrix> tridiag; | 
|  | tridiag.compute(saA); | 
|  |  | 
|  | // LU module | 
|  | Eigen::PartialPivLU<Matrix> ppLU; | 
|  | ppLU.compute(A); | 
|  | X = ppLU.solve(B); | 
|  | x = ppLU.solve(b); | 
|  | Eigen::FullPivLU<Matrix> fpLU; | 
|  | fpLU.compute(A); | 
|  | X = fpLU.solve(B); | 
|  | x = fpLU.solve(b); | 
|  |  | 
|  | // QR module | 
|  | Eigen::HouseholderQR<Matrix> hQR; | 
|  | hQR.compute(A); | 
|  | X = hQR.solve(B); | 
|  | x = hQR.solve(b); | 
|  | Eigen::ColPivHouseholderQR<Matrix> cpQR; | 
|  | cpQR.compute(A); | 
|  | X = cpQR.solve(B); | 
|  | x = cpQR.solve(b); | 
|  | Eigen::FullPivHouseholderQR<Matrix> fpQR; | 
|  | fpQR.compute(A); | 
|  | // FIXME X = fpQR.solve(B); | 
|  | x = fpQR.solve(b); | 
|  |  | 
|  | // SVD module | 
|  | Eigen::JacobiSVD<Matrix, ComputeFullU | ComputeFullV> jSVD; | 
|  | jSVD.compute(A); | 
|  | } | 
|  |  | 
|  | void test_zerosized() { | 
|  | // default constructors: | 
|  | Eigen::MatrixXd A; | 
|  | Eigen::VectorXd v; | 
|  | // explicit zero-sized: | 
|  | Eigen::ArrayXXd A0(0, 0); | 
|  | Eigen::ArrayXd v0(0); | 
|  |  | 
|  | // assigning empty objects to each other: | 
|  | A = A0; | 
|  | v = v0; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void test_reference(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | enum { Flag = MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; | 
|  | enum { TransposeFlag = !MatrixType::IsRowMajor ? Eigen::RowMajor : Eigen::ColMajor }; | 
|  | Index rows = m.rows(), cols = m.cols(); | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, Flag> MatrixX; | 
|  | typedef Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic, TransposeFlag> MatrixXT; | 
|  | // Dynamic reference: | 
|  | typedef Eigen::Ref<const MatrixX> Ref; | 
|  | typedef Eigen::Ref<const MatrixXT> RefT; | 
|  |  | 
|  | Ref r1(m); | 
|  | Ref r2(m.block(rows / 3, cols / 4, rows / 2, cols / 2)); | 
|  | RefT r3(m.transpose()); | 
|  | RefT r4(m.topLeftCorner(rows / 2, cols / 2).transpose()); | 
|  |  | 
|  | VERIFY_RAISES_ASSERT(RefT r5(m)); | 
|  | VERIFY_RAISES_ASSERT(Ref r6(m.transpose())); | 
|  | VERIFY_RAISES_ASSERT(Ref r7(Scalar(2) * m)); | 
|  |  | 
|  | // Copy constructors shall also never malloc | 
|  | Ref r8 = r1; | 
|  | RefT r9 = r3; | 
|  |  | 
|  | // Initializing from a compatible Ref shall also never malloc | 
|  | Eigen::Ref<const MatrixX, Unaligned, Stride<Dynamic, Dynamic> > r10 = r8, r11 = m; | 
|  |  | 
|  | // Initializing from an incompatible Ref will malloc: | 
|  | typedef Eigen::Ref<const MatrixX, Aligned> RefAligned; | 
|  | VERIFY_RAISES_ASSERT(RefAligned r12 = r10); | 
|  | VERIFY_RAISES_ASSERT(Ref r13 = r10);  // r10 has more dynamic strides | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(nomalloc) { | 
|  | // create some dynamic objects | 
|  | Eigen::MatrixXd M1 = MatrixXd::Random(3, 3); | 
|  | Ref<const MatrixXd> R1 = 2.0 * M1;  // Ref requires temporary | 
|  |  | 
|  | // from here on prohibit malloc: | 
|  | Eigen::internal::set_is_malloc_allowed(false); | 
|  |  | 
|  | // check that our operator new is indeed called: | 
|  | VERIFY_RAISES_ASSERT(MatrixXd dummy(MatrixXd::Random(3, 3))); | 
|  | CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(nomalloc(Matrix4d())); | 
|  | CALL_SUBTEST_3(nomalloc(Matrix<float, 32, 32>())); | 
|  |  | 
|  | // Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms) | 
|  | CALL_SUBTEST_4(ctms_decompositions<float>()); | 
|  |  | 
|  | CALL_SUBTEST_5(test_zerosized()); | 
|  |  | 
|  | CALL_SUBTEST_6(test_reference(Matrix<float, 32, 32>())); | 
|  | CALL_SUBTEST_7(test_reference(R1)); | 
|  | CALL_SUBTEST_8(Ref<MatrixXd> R2 = M1.topRows<2>(); test_reference(R2)); | 
|  |  | 
|  | // freeing is now possible | 
|  | Eigen::internal::set_is_malloc_allowed(true); | 
|  | } |