|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | bool equalsIdentity(const MatrixType& A) { | 
|  | bool offDiagOK = true; | 
|  | for (Index i = 0; i < A.rows(); ++i) { | 
|  | for (Index j = i + 1; j < A.cols(); ++j) { | 
|  | offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); | 
|  | } | 
|  | } | 
|  | for (Index i = 0; i < A.rows(); ++i) { | 
|  | for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { | 
|  | offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool diagOK = (A.diagonal().array() == 1).all(); | 
|  | return offDiagOK && diagOK; | 
|  | } | 
|  |  | 
|  | template <typename VectorType> | 
|  | void check_extremity_accuracy(const VectorType& v, const typename VectorType::Scalar& low, | 
|  | const typename VectorType::Scalar& high) { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename VectorType::RealScalar RealScalar; | 
|  |  | 
|  | RealScalar prec = internal::is_same<RealScalar, float>::value ? NumTraits<RealScalar>::dummy_precision() * 10 | 
|  | : NumTraits<RealScalar>::dummy_precision() / 10; | 
|  | Index size = v.size(); | 
|  |  | 
|  | if (size < 20) return; | 
|  |  | 
|  | for (int i = 0; i < size; ++i) { | 
|  | if (i < 5 || i > size - 6) { | 
|  | Scalar ref = | 
|  | (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1); | 
|  | if (std::abs(ref) > 1) { | 
|  | if (!internal::isApprox(v(i), ref, prec)) | 
|  | std::cout << v(i) << " != " << ref << "  ; relative error: " << std::abs((v(i) - ref) / ref) | 
|  | << "  ; required precision: " << prec << "  ; range: " << low << "," << high << "  ; i: " << i | 
|  | << "\n"; | 
|  | VERIFY(internal::isApprox( | 
|  | v(i), | 
|  | (low * RealScalar(size - i - 1)) / RealScalar(size - 1) + (high * RealScalar(i)) / RealScalar(size - 1), | 
|  | prec)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename VectorType> | 
|  | void testVectorType(const VectorType& base) { | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename VectorType::RealScalar RealScalar; | 
|  |  | 
|  | const Index size = base.size(); | 
|  |  | 
|  | Scalar high = internal::random<Scalar>(-500, 500); | 
|  | Scalar low = (size == 1 ? high : internal::random<Scalar>(-500, 500)); | 
|  | if (numext::real(low) > numext::real(high)) std::swap(low, high); | 
|  |  | 
|  | // check low==high | 
|  | if (internal::random<float>(0.f, 1.f) < 0.05f) low = high; | 
|  | // check abs(low) >> abs(high) | 
|  | else if (size > 2 && std::numeric_limits<RealScalar>::max_exponent10 > 0 && internal::random<float>(0.f, 1.f) < 0.1f) | 
|  | low = -internal::random<Scalar>(1, 2) * | 
|  | RealScalar(std::pow(RealScalar(10), std::numeric_limits<RealScalar>::max_exponent10 / 2)); | 
|  |  | 
|  | const Scalar step = ((size == 1) ? 1 : (high - low) / RealScalar(size - 1)); | 
|  |  | 
|  | // check whether the result yields what we expect it to do | 
|  | VectorType m(base), o(base); | 
|  | m.setLinSpaced(size, low, high); | 
|  | o.setEqualSpaced(size, low, step); | 
|  |  | 
|  | if (!NumTraits<Scalar>::IsInteger) { | 
|  | VectorType n(size); | 
|  | for (int i = 0; i < size; ++i) n(i) = low + RealScalar(i) * step; | 
|  | VERIFY_IS_APPROX(m, n); | 
|  | VERIFY_IS_APPROX(n, o); | 
|  |  | 
|  | CALL_SUBTEST(check_extremity_accuracy(m, low, high)); | 
|  | } | 
|  |  | 
|  | RealScalar range_length = numext::real(high - low); | 
|  | if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size && (Index(range_length) % (size - 1)) == 0) || | 
|  | (Index(range_length + 1) < size && (size % Index(range_length + 1)) == 0)) { | 
|  | VectorType n(size); | 
|  | if ((!NumTraits<Scalar>::IsInteger) || (range_length >= size)) | 
|  | for (int i = 0; i < size; ++i) n(i) = size == 1 ? low : (low + ((high - low) * Scalar(i)) / RealScalar(size - 1)); | 
|  | else | 
|  | for (int i = 0; i < size; ++i) | 
|  | n(i) = size == 1 ? low : low + Scalar((double(range_length + 1) * double(i)) / double(size)); | 
|  | VERIFY_IS_APPROX(m, n); | 
|  |  | 
|  | // random access version | 
|  | m = VectorType::LinSpaced(size, low, high); | 
|  | VERIFY_IS_APPROX(m, n); | 
|  | VERIFY(internal::isApprox(m(m.size() - 1), high)); | 
|  | VERIFY(size == 1 || internal::isApprox(m(0), low)); | 
|  | VERIFY_IS_EQUAL(m(m.size() - 1), high); | 
|  | if (!NumTraits<Scalar>::IsInteger) CALL_SUBTEST(check_extremity_accuracy(m, low, high)); | 
|  | } | 
|  |  | 
|  | VERIFY(numext::real(m(m.size() - 1)) <= numext::real(high)); | 
|  | VERIFY((m.array().real() <= numext::real(high)).all()); | 
|  | VERIFY((m.array().real() >= numext::real(low)).all()); | 
|  |  | 
|  | VERIFY(numext::real(m(m.size() - 1)) >= numext::real(low)); | 
|  | if (size >= 1) { | 
|  | VERIFY(internal::isApprox(m(0), low)); | 
|  | VERIFY_IS_EQUAL(m(0), low); | 
|  | } | 
|  |  | 
|  | // check whether everything works with row and col major vectors | 
|  | Matrix<Scalar, Dynamic, 1> row_vector(size); | 
|  | Matrix<Scalar, 1, Dynamic> col_vector(size); | 
|  | row_vector.setLinSpaced(size, low, high); | 
|  | col_vector.setLinSpaced(size, low, high); | 
|  | // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit | 
|  | // when computing the squared sum in isApprox, thus the 2x factor. | 
|  | VERIFY(row_vector.isApprox(col_vector.transpose(), RealScalar(2) * NumTraits<Scalar>::epsilon())); | 
|  |  | 
|  | Matrix<Scalar, Dynamic, 1> size_changer(size + 50); | 
|  | size_changer.setLinSpaced(size, low, high); | 
|  | VERIFY(size_changer.size() == size); | 
|  |  | 
|  | typedef Matrix<Scalar, 1, 1> ScalarMatrix; | 
|  | ScalarMatrix scalar; | 
|  | scalar.setLinSpaced(1, low, high); | 
|  | VERIFY_IS_APPROX(scalar, ScalarMatrix::Constant(high)); | 
|  | VERIFY_IS_APPROX(ScalarMatrix::LinSpaced(1, low, high), ScalarMatrix::Constant(high)); | 
|  |  | 
|  | // regression test for bug 526 (linear vectorized transversal) | 
|  | if (size > 1 && (!NumTraits<Scalar>::IsInteger)) { | 
|  | m.tail(size - 1).setLinSpaced(low, high); | 
|  | VERIFY_IS_APPROX(m(size - 1), high); | 
|  | } | 
|  |  | 
|  | // regression test for bug 1383 (LinSpaced with empty size/range) | 
|  | { | 
|  | Index n0 = VectorType::SizeAtCompileTime == Dynamic ? 0 : VectorType::SizeAtCompileTime; | 
|  | low = internal::random<Scalar>(); | 
|  | m = VectorType::LinSpaced(n0, low, low - RealScalar(1)); | 
|  | VERIFY(m.size() == n0); | 
|  |  | 
|  | if (VectorType::SizeAtCompileTime == Dynamic) { | 
|  | VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, 0, Scalar(n0 - 1)).sum(), Scalar(0)); | 
|  | VERIFY_IS_EQUAL(VectorType::LinSpaced(n0, low, low - RealScalar(1)).sum(), Scalar(0)); | 
|  | } | 
|  |  | 
|  | m.setLinSpaced(n0, 0, Scalar(n0 - 1)); | 
|  | VERIFY(m.size() == n0); | 
|  | m.setLinSpaced(n0, low, low - RealScalar(1)); | 
|  | VERIFY(m.size() == n0); | 
|  |  | 
|  | // empty range only: | 
|  | VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low), VectorType::Constant(size, low)); | 
|  | m.setLinSpaced(size, low, low); | 
|  | VERIFY_IS_APPROX(m, VectorType::Constant(size, low)); | 
|  |  | 
|  | if (NumTraits<Scalar>::IsInteger) { | 
|  | VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar(size - 1)), | 
|  | VectorType::LinSpaced(size, low + Scalar(size - 1), low).reverse()); | 
|  |  | 
|  | if (VectorType::SizeAtCompileTime == Dynamic) { | 
|  | // Check negative multiplicator path: | 
|  | for (Index k = 1; k < 5; ++k) | 
|  | VERIFY_IS_APPROX(VectorType::LinSpaced(size, low, low + Scalar((size - 1) * k)), | 
|  | VectorType::LinSpaced(size, low + Scalar((size - 1) * k), low).reverse()); | 
|  | // Check negative divisor path: | 
|  | for (Index k = 1; k < 5; ++k) | 
|  | VERIFY_IS_APPROX(VectorType::LinSpaced(size * k, low, low + Scalar(size - 1)), | 
|  | VectorType::LinSpaced(size * k, low + Scalar(size - 1), low).reverse()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // test setUnit() | 
|  | if (m.size() > 0) { | 
|  | for (Index k = 0; k < 10; ++k) { | 
|  | Index i = internal::random<Index>(0, m.size() - 1); | 
|  | m.setUnit(i); | 
|  | VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); | 
|  | } | 
|  | if (VectorType::SizeAtCompileTime == Dynamic) { | 
|  | Index i = internal::random<Index>(0, 2 * m.size() - 1); | 
|  | m.setUnit(2 * m.size(), i); | 
|  | VERIFY_IS_APPROX(m, VectorType::Unit(m.size(), i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void testMatrixType(const MatrixType& m) { | 
|  | using std::abs; | 
|  | const Index rows = m.rows(); | 
|  | const Index cols = m.cols(); | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Scalar s1; | 
|  | do { | 
|  | s1 = internal::random<Scalar>(); | 
|  | } while (abs(s1) < RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger)); | 
|  |  | 
|  | MatrixType A; | 
|  | A.setIdentity(rows, cols); | 
|  | VERIFY(equalsIdentity(A)); | 
|  | VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); | 
|  |  | 
|  | A = MatrixType::Constant(rows, cols, s1); | 
|  | Index i = internal::random<Index>(0, rows - 1); | 
|  | Index j = internal::random<Index>(0, cols - 1); | 
|  | VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1)(i, j), s1); | 
|  | VERIFY_IS_APPROX(MatrixType::Constant(rows, cols, s1).coeff(i, j), s1); | 
|  | VERIFY_IS_APPROX(A(i, j), s1); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void bug79() { | 
|  | // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). | 
|  | VERIFY((MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < | 
|  | std::numeric_limits<double>::epsilon()); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void bug1630() { | 
|  | Array4d x4 = Array4d::LinSpaced(0.0, 1.0); | 
|  | Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3)); | 
|  | VERIFY_IS_APPROX(x4.head(3), x3); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void nullary_overflow() { | 
|  | // Check possible overflow issue | 
|  | int n = 60000; | 
|  | ArrayXi a1(n), a2(n), a_ref(n); | 
|  | a1.setLinSpaced(n, 0, n - 1); | 
|  | a2.setEqualSpaced(n, 0, 1); | 
|  | for (int i = 0; i < n; ++i) a_ref(i) = i; | 
|  | VERIFY_IS_APPROX(a1, a_ref); | 
|  | VERIFY_IS_APPROX(a2, a_ref); | 
|  | } | 
|  |  | 
|  | template <int> | 
|  | void nullary_internal_logic() { | 
|  | // check some internal logic | 
|  | VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<double> >::value)); | 
|  | VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<double> >::value)); | 
|  | VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<double> >::value)); | 
|  | VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret)); | 
|  |  | 
|  | VERIFY((!internal::has_nullary_operator<internal::scalar_identity_op<double> >::value)); | 
|  | VERIFY((!internal::has_unary_operator<internal::scalar_identity_op<double> >::value)); | 
|  | VERIFY((internal::has_binary_operator<internal::scalar_identity_op<double> >::value)); | 
|  | VERIFY((!internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret)); | 
|  |  | 
|  | VERIFY((!internal::has_nullary_operator<internal::linspaced_op<float> >::value)); | 
|  | VERIFY((internal::has_unary_operator<internal::linspaced_op<float> >::value)); | 
|  | VERIFY((!internal::has_binary_operator<internal::linspaced_op<float> >::value)); | 
|  | VERIFY((internal::functor_has_linear_access<internal::linspaced_op<float> >::ret)); | 
|  |  | 
|  | // Regression unit test for a weird MSVC bug. | 
|  | // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details. | 
|  | // See also traits<Ref>::match. | 
|  | { | 
|  | MatrixXf A = MatrixXf::Random(3, 3); | 
|  | Ref<const MatrixXf> R = 2.0 * A; | 
|  | VERIFY_IS_APPROX(R, A + A); | 
|  |  | 
|  | Ref<const MatrixXf> R1 = MatrixXf::Random(3, 3) + A; | 
|  |  | 
|  | VectorXi V = VectorXi::Random(3); | 
|  | Ref<const VectorXi> R2 = VectorXi::LinSpaced(3, 1, 3) + V; | 
|  | VERIFY_IS_APPROX(R2, V + Vector3i(1, 2, 3)); | 
|  |  | 
|  | VERIFY((internal::has_nullary_operator<internal::scalar_constant_op<float> >::value)); | 
|  | VERIFY((!internal::has_unary_operator<internal::scalar_constant_op<float> >::value)); | 
|  | VERIFY((!internal::has_binary_operator<internal::scalar_constant_op<float> >::value)); | 
|  | VERIFY((internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret)); | 
|  |  | 
|  | VERIFY((!internal::has_nullary_operator<internal::linspaced_op<int> >::value)); | 
|  | VERIFY((internal::has_unary_operator<internal::linspaced_op<int> >::value)); | 
|  | VERIFY((!internal::has_binary_operator<internal::linspaced_op<int> >::value)); | 
|  | VERIFY((internal::functor_has_linear_access<internal::linspaced_op<int> >::ret)); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(nullary) { | 
|  | CALL_SUBTEST_1(testMatrixType(Matrix2d())); | 
|  | CALL_SUBTEST_2(testMatrixType(MatrixXcf(internal::random<int>(1, 300), internal::random<int>(1, 300)))); | 
|  | CALL_SUBTEST_3(testMatrixType(MatrixXf(internal::random<int>(1, 300), internal::random<int>(1, 300)))); | 
|  |  | 
|  | for (int i = 0; i < g_repeat * 10; i++) { | 
|  | CALL_SUBTEST_3(testVectorType(VectorXcd(internal::random<int>(1, 30000)))); | 
|  | CALL_SUBTEST_4(testVectorType(VectorXd(internal::random<int>(1, 30000)))); | 
|  | CALL_SUBTEST_5(testVectorType(Vector4d()));  // regression test for bug 232 | 
|  | CALL_SUBTEST_6(testVectorType(Vector3d())); | 
|  | CALL_SUBTEST_7(testVectorType(VectorXf(internal::random<int>(1, 30000)))); | 
|  | CALL_SUBTEST_8(testVectorType(Vector3f())); | 
|  | CALL_SUBTEST_8(testVectorType(Vector4f())); | 
|  | CALL_SUBTEST_8(testVectorType(Matrix<float, 8, 1>())); | 
|  | CALL_SUBTEST_8(testVectorType(Matrix<float, 1, 1>())); | 
|  |  | 
|  | CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(1, 10)))); | 
|  | CALL_SUBTEST_9(testVectorType(VectorXi(internal::random<int>(9, 300)))); | 
|  | CALL_SUBTEST_9(testVectorType(Matrix<int, 1, 1>())); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_6(bug79<0>()); | 
|  | CALL_SUBTEST_6(bug1630<0>()); | 
|  | CALL_SUBTEST_9(nullary_overflow<0>()); | 
|  | CALL_SUBTEST_10(nullary_internal_logic<0>()); | 
|  | } |