|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LU> | 
|  | #include <algorithm> | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void inverse_permutation_4x4() { | 
|  | Vector4i indices(0, 1, 2, 3); | 
|  | for (int i = 0; i < 24; ++i) { | 
|  | MatrixType m = PermutationMatrix<4>(indices); | 
|  | MatrixType inv = m.inverse(); | 
|  | VERIFY_IS_APPROX(m * inv, MatrixType::Identity()); | 
|  | std::next_permutation(indices.data(), indices.data() + 4); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void inverse_general_4x4(int repeat) { | 
|  | using std::abs; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | double error_sum = 0., error_max = 0.; | 
|  | for (int i = 0; i < repeat; ++i) { | 
|  | MatrixType m; | 
|  | bool is_invertible; | 
|  | do { | 
|  | m = MatrixType::Random(); | 
|  | is_invertible = Eigen::FullPivLU<MatrixType>(m).isInvertible(); | 
|  | } while (!is_invertible); | 
|  | MatrixType inv = m.inverse(); | 
|  | double error = double((m * inv - MatrixType::Identity()).norm()); | 
|  | error_sum += error; | 
|  | error_max = (std::max)(error_max, error); | 
|  | } | 
|  | std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl; | 
|  | double error_avg = error_sum / repeat; | 
|  | EIGEN_DEBUG_VAR(error_avg); | 
|  | EIGEN_DEBUG_VAR(error_max); | 
|  | // FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong?? | 
|  | // FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21. | 
|  | VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25)); | 
|  | VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0)); | 
|  |  | 
|  | { | 
|  | int s = 5;  // internal::random<int>(4,10); | 
|  | int i = 0;  // internal::random<int>(0,s-4); | 
|  | int j = 0;  // internal::random<int>(0,s-4); | 
|  | Matrix<Scalar, 5, 5> mat(s, s); | 
|  | mat.setRandom(); | 
|  | MatrixType submat = mat.template block<4, 4>(i, j); | 
|  | MatrixType mat_inv = mat.template block<4, 4>(i, j).inverse(); | 
|  | VERIFY_IS_APPROX(mat_inv, submat.inverse()); | 
|  | mat.template block<4, 4>(i, j) = submat.inverse(); | 
|  | VERIFY_IS_APPROX(mat_inv, (mat.template block<4, 4>(i, j))); | 
|  | } | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(prec_inverse_4x4) { | 
|  | CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>())); | 
|  | CALL_SUBTEST_1((inverse_general_4x4<Matrix4f>(200000 * g_repeat))); | 
|  | CALL_SUBTEST_1((inverse_general_4x4<Matrix<float, 4, 4, RowMajor> >(200000 * g_repeat))); | 
|  |  | 
|  | CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double, 4, 4, RowMajor> >())); | 
|  | CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, ColMajor> >(200000 * g_repeat))); | 
|  | CALL_SUBTEST_2((inverse_general_4x4<Matrix<double, 4, 4, RowMajor> >(200000 * g_repeat))); | 
|  |  | 
|  | CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>())); | 
|  | CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat))); | 
|  | } |