|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define TEST_ENABLE_TEMPORARY_TRACKING | 
|  | #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 | 
|  | // ^^ see bug 1449 | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void matrixRedux(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols); | 
|  |  | 
|  | // The entries of m1 are uniformly distributed in [-1,1), so m1.prod() is very small. This may lead to test | 
|  | // failures if we underflow into denormals. Thus, we scale so that entries are close to 1. | 
|  | MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1; | 
|  |  | 
|  | Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows, rows); | 
|  | m2.setRandom(); | 
|  | // Prevent overflows for integer types. | 
|  | if (Eigen::NumTraits<Scalar>::IsInteger) { | 
|  | Scalar kMaxVal = Scalar(10000); | 
|  | m1.array() = m1.array() - kMaxVal * (m1.array() / kMaxVal); | 
|  | m2.array() = m2.array() - kMaxVal * (m2.array() / kMaxVal); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1)); | 
|  | VERIFY_IS_APPROX( | 
|  | MatrixType::Ones(rows, cols).sum(), | 
|  | Scalar(float( | 
|  | rows * | 
|  | cols)));  // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy | 
|  | Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0))); | 
|  | for (int j = 0; j < cols; j++) | 
|  | for (int i = 0; i < rows; i++) { | 
|  | s += m1(i, j); | 
|  | p *= m1_for_prod(i, j); | 
|  | minc = (std::min)(numext::real(minc), numext::real(m1(i, j))); | 
|  | maxc = (std::max)(numext::real(maxc), numext::real(m1(i, j))); | 
|  | } | 
|  | const Scalar mean = s / Scalar(RealScalar(rows * cols)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.sum(), s); | 
|  | VERIFY_IS_APPROX(m1.mean(), mean); | 
|  | VERIFY_IS_APPROX(m1_for_prod.prod(), p); | 
|  | VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc)); | 
|  | VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc)); | 
|  |  | 
|  | // test that partial reduction works if nested expressions is forced to evaluate early | 
|  | VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose()).cwiseProduct(m2.matrix()).rowwise().sum().sum(), | 
|  | (m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum()); | 
|  |  | 
|  | // test slice vectorization assuming assign is ok | 
|  | Index r0 = internal::random<Index>(0, rows - 1); | 
|  | Index c0 = internal::random<Index>(0, cols - 1); | 
|  | Index r1 = internal::random<Index>(r0 + 1, rows) - r0; | 
|  | Index c1 = internal::random<Index>(c0 + 1, cols) - c0; | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).sum(), m1.block(r0, c0, r1, c1).eval().sum()); | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).mean(), m1.block(r0, c0, r1, c1).eval().mean()); | 
|  | VERIFY_IS_APPROX(m1_for_prod.block(r0, c0, r1, c1).prod(), m1_for_prod.block(r0, c0, r1, c1).eval().prod()); | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().minCoeff(), m1.block(r0, c0, r1, c1).real().eval().minCoeff()); | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, r1, c1).real().maxCoeff(), m1.block(r0, c0, r1, c1).real().eval().maxCoeff()); | 
|  |  | 
|  | // regression for bug 1090 | 
|  | const int R1 = MatrixType::RowsAtCompileTime >= 2 ? MatrixType::RowsAtCompileTime / 2 : 6; | 
|  | const int C1 = MatrixType::ColsAtCompileTime >= 2 ? MatrixType::ColsAtCompileTime / 2 : 6; | 
|  | if (R1 <= rows - r0 && C1 <= cols - c0) { | 
|  | VERIFY_IS_APPROX((m1.template block<R1, C1>(r0, c0).sum()), m1.block(r0, c0, R1, C1).sum()); | 
|  | } | 
|  |  | 
|  | // test empty objects | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).sum(), Scalar(0)); | 
|  | VERIFY_IS_APPROX(m1.block(r0, c0, 0, 0).prod(), Scalar(1)); | 
|  |  | 
|  | // test nesting complex expression | 
|  | VERIFY_EVALUATION_COUNT((m1.matrix() * m1.matrix().transpose()).sum(), | 
|  | (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); | 
|  | VERIFY_EVALUATION_COUNT(((m1.matrix() * m1.matrix().transpose()) + m2).sum(), | 
|  | (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime != 1 ? 0 : 1)); | 
|  | } | 
|  |  | 
|  | template <typename VectorType> | 
|  | void vectorRedux(const VectorType& w) { | 
|  | using std::abs; | 
|  | typedef typename VectorType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | Index size = w.size(); | 
|  |  | 
|  | VectorType v = VectorType::Random(size); | 
|  | VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v;  // see comment above declaration of m1_for_prod | 
|  |  | 
|  | for (int i = 1; i < size; i++) { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0))); | 
|  | for (int j = 0; j < i; j++) { | 
|  | s += v[j]; | 
|  | p *= v_for_prod[j]; | 
|  | minc = (std::min)(minc, numext::real(v[j])); | 
|  | maxc = (std::max)(maxc, numext::real(v[j])); | 
|  | } | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1)); | 
|  | VERIFY_IS_APPROX(p, v_for_prod.head(i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff()); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < size - 1; i++) { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | 
|  | for (int j = i; j < size; j++) { | 
|  | s += v[j]; | 
|  | p *= v_for_prod[j]; | 
|  | minc = (std::min)(minc, numext::real(v[j])); | 
|  | maxc = (std::max)(maxc, numext::real(v[j])); | 
|  | } | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size - i).sum()), Scalar(1)); | 
|  | VERIFY_IS_APPROX(p, v_for_prod.tail(size - i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().tail(size - i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().tail(size - i).maxCoeff()); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < size / 2; i++) { | 
|  | Scalar s(0), p(1); | 
|  | RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i))); | 
|  | for (int j = i; j < size - i; j++) { | 
|  | s += v[j]; | 
|  | p *= v_for_prod[j]; | 
|  | minc = (std::min)(minc, numext::real(v[j])); | 
|  | maxc = (std::max)(maxc, numext::real(v[j])); | 
|  | } | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size - 2 * i).sum()), Scalar(1)); | 
|  | VERIFY_IS_APPROX(p, v_for_prod.segment(i, size - 2 * i).prod()); | 
|  | VERIFY_IS_APPROX(minc, v.real().segment(i, size - 2 * i).minCoeff()); | 
|  | VERIFY_IS_APPROX(maxc, v.real().segment(i, size - 2 * i).maxCoeff()); | 
|  | } | 
|  |  | 
|  | // test empty objects | 
|  | VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0)); | 
|  | VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1)); | 
|  | VERIFY_RAISES_ASSERT(v.head(0).mean()); | 
|  | VERIFY_RAISES_ASSERT(v.head(0).minCoeff()); | 
|  | VERIFY_RAISES_ASSERT(v.head(0).maxCoeff()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(redux) { | 
|  | // the max size cannot be too large, otherwise reduxion operations obviously generate large errors. | 
|  | int maxsize = (std::min)(100, EIGEN_TEST_MAX_SIZE); | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(maxsize); | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(matrixRedux(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_1(matrixRedux(Array<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(matrixRedux(Matrix2f())); | 
|  | CALL_SUBTEST_2(matrixRedux(Array2f())); | 
|  | CALL_SUBTEST_2(matrixRedux(Array22f())); | 
|  | CALL_SUBTEST_3(matrixRedux(Matrix4d())); | 
|  | CALL_SUBTEST_3(matrixRedux(Array4d())); | 
|  | CALL_SUBTEST_3(matrixRedux(Array44d())); | 
|  | CALL_SUBTEST_4(matrixRedux(MatrixXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_4(matrixRedux(ArrayXXcf(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_5(matrixRedux(MatrixXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_5(matrixRedux(ArrayXXd(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_6(matrixRedux(MatrixXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_6(matrixRedux(ArrayXXi(internal::random<int>(1, maxsize), internal::random<int>(1, maxsize)))); | 
|  | } | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_7(vectorRedux(Vector4f())); | 
|  | CALL_SUBTEST_7(vectorRedux(Array4f())); | 
|  | CALL_SUBTEST_5(vectorRedux(VectorXd(internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_5(vectorRedux(ArrayXd(internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_8(vectorRedux(VectorXf(internal::random<int>(1, maxsize)))); | 
|  | CALL_SUBTEST_8(vectorRedux(ArrayXf(internal::random<int>(1, maxsize)))); | 
|  | } | 
|  | } |