|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TESTSPARSE_H | 
|  | #define EIGEN_TESTSPARSE_H | 
|  |  | 
|  | #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #ifdef min | 
|  | #undef min | 
|  | #endif | 
|  |  | 
|  | #ifdef max | 
|  | #undef max | 
|  | #endif | 
|  |  | 
|  | #include <unordered_map> | 
|  | #define EIGEN_UNORDERED_MAP_SUPPORT | 
|  |  | 
|  | #include <Eigen/Cholesky> | 
|  | #include <Eigen/LU> | 
|  | #include <Eigen/Sparse> | 
|  |  | 
|  | enum { ForceNonZeroDiag = 1, MakeLowerTriangular = 2, MakeUpperTriangular = 4, ForceRealDiag = 8 }; | 
|  |  | 
|  | /* Initializes both a sparse and dense matrix with same random values, | 
|  | * and a ratio of \a density non zero entries. | 
|  | * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular | 
|  | *        allowing to control the shape of the matrix. | 
|  | * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, | 
|  | *        and zero coefficients respectively. | 
|  | */ | 
|  | template <typename Scalar, int Opt1, int Opt2, typename StorageIndex> | 
|  | void initSparse(double density, Matrix<Scalar, Dynamic, Dynamic, Opt1>& refMat, | 
|  | SparseMatrix<Scalar, Opt2, StorageIndex>& sparseMat, int flags = 0, | 
|  | std::vector<Matrix<StorageIndex, 2, 1> >* zeroCoords = 0, | 
|  | std::vector<Matrix<StorageIndex, 2, 1> >* nonzeroCoords = 0) { | 
|  | enum { IsRowMajor = SparseMatrix<Scalar, Opt2, StorageIndex>::IsRowMajor }; | 
|  | sparseMat.setZero(); | 
|  | // sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); | 
|  | int nnz = static_cast<int>((1.5 * density) * static_cast<double>(IsRowMajor ? refMat.cols() : refMat.rows())); | 
|  | sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), nnz)); | 
|  |  | 
|  | Index insert_count = 0; | 
|  | for (Index j = 0; j < sparseMat.outerSize(); j++) { | 
|  | // sparseMat.startVec(j); | 
|  | for (Index i = 0; i < sparseMat.innerSize(); i++) { | 
|  | Index ai(i), aj(j); | 
|  | if (IsRowMajor) std::swap(ai, aj); | 
|  | Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
|  | if ((flags & ForceNonZeroDiag) && (i == j)) { | 
|  | // FIXME: the following is too conservative | 
|  | v = internal::random<Scalar>() * Scalar(3.); | 
|  | v = v * v; | 
|  | if (numext::real(v) > 0) | 
|  | v += Scalar(5); | 
|  | else | 
|  | v -= Scalar(5); | 
|  | } | 
|  | if ((flags & MakeLowerTriangular) && aj > ai) | 
|  | v = Scalar(0); | 
|  | else if ((flags & MakeUpperTriangular) && aj < ai) | 
|  | v = Scalar(0); | 
|  |  | 
|  | if ((flags & ForceRealDiag) && (i == j)) v = numext::real(v); | 
|  |  | 
|  | if (!numext::is_exactly_zero(v)) { | 
|  | // sparseMat.insertBackByOuterInner(j,i) = v; | 
|  | sparseMat.insertByOuterInner(j, i) = v; | 
|  | ++insert_count; | 
|  | if (nonzeroCoords) nonzeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); | 
|  | } else if (zeroCoords) { | 
|  | zeroCoords->push_back(Matrix<StorageIndex, 2, 1>(ai, aj)); | 
|  | } | 
|  | refMat(ai, aj) = v; | 
|  |  | 
|  | // make sure we only insert as many as the sparse matrix supports | 
|  | if (insert_count == NumTraits<StorageIndex>::highest()) return; | 
|  | } | 
|  | } | 
|  | // sparseMat.finalize(); | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Options, typename Index> | 
|  | void initSparse(double density, Matrix<Scalar, Dynamic, 1>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, | 
|  | std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { | 
|  | sparseVec.reserve(int(refVec.size() * density)); | 
|  | sparseVec.setZero(); | 
|  | for (int i = 0; i < refVec.size(); i++) { | 
|  | Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
|  | if (!numext::is_exactly_zero(v)) { | 
|  | sparseVec.insertBack(i) = v; | 
|  | if (nonzeroCoords) nonzeroCoords->push_back(i); | 
|  | } else if (zeroCoords) | 
|  | zeroCoords->push_back(i); | 
|  | refVec[i] = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Options, typename Index> | 
|  | void initSparse(double density, Matrix<Scalar, 1, Dynamic>& refVec, SparseVector<Scalar, Options, Index>& sparseVec, | 
|  | std::vector<int>* zeroCoords = 0, std::vector<int>* nonzeroCoords = 0) { | 
|  | sparseVec.reserve(int(refVec.size() * density)); | 
|  | sparseVec.setZero(); | 
|  | for (int i = 0; i < refVec.size(); i++) { | 
|  | Scalar v = (internal::random<double>(0, 1) < density) ? internal::random<Scalar>() : Scalar(0); | 
|  | if (v != Scalar(0)) { | 
|  | sparseVec.insertBack(i) = v; | 
|  | if (nonzeroCoords) nonzeroCoords->push_back(i); | 
|  | } else if (zeroCoords) | 
|  | zeroCoords->push_back(i); | 
|  | refVec[i] = v; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // EIGEN_TESTSPARSE_H |