|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2012 Desire Nuentsa Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | #include "sparse.h" | 
|  | #include <Eigen/SparseQR> | 
|  |  | 
|  | template <typename MatrixType, typename DenseMat> | 
|  | int generate_sparse_rectangular_problem(MatrixType& A, DenseMat& dA, int maxRows = 300, int maxCols = 150) { | 
|  | eigen_assert(maxRows >= maxCols); | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | int rows = internal::random<int>(1, maxRows); | 
|  | int cols = internal::random<int>(1, maxCols); | 
|  | double density = (std::max)(8. / (rows * cols), 0.01); | 
|  |  | 
|  | A.resize(rows, cols); | 
|  | dA.resize(rows, cols); | 
|  | initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); | 
|  | A.makeCompressed(); | 
|  | int nop = internal::random<int>(0, internal::random<double>(0, 1) > 0.5 ? cols / 2 : 0); | 
|  | for (int k = 0; k < nop; ++k) { | 
|  | int j0 = internal::random<int>(0, cols - 1); | 
|  | int j1 = internal::random<int>(0, cols - 1); | 
|  | Scalar s = internal::random<Scalar>(); | 
|  | A.col(j0) = s * A.col(j1); | 
|  | dA.col(j0) = s * dA.col(j1); | 
|  | } | 
|  |  | 
|  | //   if(rows<cols) { | 
|  | //     A.conservativeResize(cols,cols); | 
|  | //     dA.conservativeResize(cols,cols); | 
|  | //     dA.bottomRows(cols-rows).setZero(); | 
|  | //   } | 
|  |  | 
|  | return rows; | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void test_sparseqr_scalar() { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef SparseMatrix<Scalar, ColMajor> MatrixType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> DenseMat; | 
|  | typedef Matrix<Scalar, Dynamic, 1> DenseVector; | 
|  | MatrixType A; | 
|  | DenseMat dA; | 
|  | DenseVector refX, x, b; | 
|  | SparseQR<MatrixType, COLAMDOrdering<int> > solver; | 
|  | generate_sparse_rectangular_problem(A, dA); | 
|  |  | 
|  | b = dA * DenseVector::Random(A.cols()); | 
|  | solver.compute(A); | 
|  |  | 
|  | // Q should be MxM | 
|  | VERIFY_IS_EQUAL(solver.matrixQ().rows(), A.rows()); | 
|  | VERIFY_IS_EQUAL(solver.matrixQ().cols(), A.rows()); | 
|  |  | 
|  | // R should be MxN | 
|  | VERIFY_IS_EQUAL(solver.matrixR().rows(), A.rows()); | 
|  | VERIFY_IS_EQUAL(solver.matrixR().cols(), A.cols()); | 
|  |  | 
|  | // Q and R can be multiplied | 
|  | DenseMat recoveredA = solver.matrixQ() * DenseMat(solver.matrixR().template triangularView<Upper>()) * | 
|  | solver.colsPermutation().transpose(); | 
|  | VERIFY_IS_EQUAL(recoveredA.rows(), A.rows()); | 
|  | VERIFY_IS_EQUAL(recoveredA.cols(), A.cols()); | 
|  |  | 
|  | // and in the full rank case the original matrix is recovered | 
|  | if (solver.rank() == A.cols()) { | 
|  | VERIFY_IS_APPROX(A, recoveredA); | 
|  | } | 
|  |  | 
|  | if (internal::random<float>(0, 1) > 0.5f) | 
|  | solver.factorize(A);  // this checks that calling analyzePattern is not needed if the pattern do not change. | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse QR factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  | x = solver.solve(b); | 
|  | if (solver.info() != Success) { | 
|  | std::cerr << "sparse QR factorization failed\n"; | 
|  | exit(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compare with a dense QR solver | 
|  | ColPivHouseholderQR<DenseMat> dqr(dA); | 
|  | refX = dqr.solve(b); | 
|  |  | 
|  | bool rank_deficient = A.cols() > A.rows() || dqr.rank() < A.cols(); | 
|  | if (rank_deficient) { | 
|  | // rank deficient problem -> we might have to increase the threshold | 
|  | // to get a correct solution. | 
|  | RealScalar th = | 
|  | RealScalar(20) * dA.colwise().norm().maxCoeff() * (A.rows() + A.cols()) * NumTraits<RealScalar>::epsilon(); | 
|  | for (Index k = 0; (k < 16) && !test_isApprox(A * x, b); ++k) { | 
|  | th *= RealScalar(10); | 
|  | solver.setPivotThreshold(th); | 
|  | solver.compute(A); | 
|  | x = solver.solve(b); | 
|  | } | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(A * x, b); | 
|  |  | 
|  | // For rank deficient problem, the estimated rank might | 
|  | // be slightly off, so let's only raise a warning in such cases. | 
|  | if (rank_deficient) ++g_test_level; | 
|  | VERIFY_IS_EQUAL(solver.rank(), dqr.rank()); | 
|  | if (rank_deficient) --g_test_level; | 
|  |  | 
|  | if (solver.rank() == A.cols())  // full rank | 
|  | VERIFY_IS_APPROX(x, refX); | 
|  | //   else | 
|  | //     VERIFY((dA * refX - b).norm() * 2 > (A * x - b).norm() ); | 
|  |  | 
|  | // Compute explicitly the matrix Q | 
|  | MatrixType Q, QtQ, idM; | 
|  | Q = solver.matrixQ(); | 
|  | // Check  ||Q' * Q - I || | 
|  | QtQ = Q * Q.adjoint(); | 
|  | idM.resize(Q.rows(), Q.rows()); | 
|  | idM.setIdentity(); | 
|  | VERIFY(idM.isApprox(QtQ)); | 
|  |  | 
|  | // Q to dense | 
|  | DenseMat dQ; | 
|  | dQ = solver.matrixQ(); | 
|  | VERIFY_IS_APPROX(Q, dQ); | 
|  | } | 
|  | EIGEN_DECLARE_TEST(sparseqr) { | 
|  | for (int i = 0; i < g_repeat; ++i) { | 
|  | CALL_SUBTEST_1(test_sparseqr_scalar<double>()); | 
|  | CALL_SUBTEST_2(test_sparseqr_scalar<std::complex<double> >()); | 
|  | } | 
|  | } |