|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename T> | 
|  | EIGEN_DONT_INLINE T copy(const T& x) { | 
|  | return x; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void stable_norm(const MatrixType& m) { | 
|  | /* this test covers the following files: | 
|  | StableNorm.h | 
|  | */ | 
|  | using std::abs; | 
|  | using std::sqrt; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  |  | 
|  | bool complex_real_product_ok = true; | 
|  |  | 
|  | // Check the basic machine-dependent constants. | 
|  | { | 
|  | int ibeta, it, iemin, iemax; | 
|  |  | 
|  | ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers | 
|  | it = std::numeric_limits<RealScalar>::digits;           // number of base-beta digits in mantissa | 
|  | iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent | 
|  | iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent | 
|  |  | 
|  | VERIFY((!(iemin > 1 - 2 * it || 1 + it > iemax || (it == 2 && ibeta < 5) || (it <= 4 && ibeta <= 3) || it < 2)) && | 
|  | "the stable norm algorithm cannot be guaranteed on this computer"); | 
|  |  | 
|  | Scalar inf = std::numeric_limits<RealScalar>::infinity(); | 
|  | if (NumTraits<Scalar>::IsComplex && (numext::isnan)(inf * RealScalar(1))) { | 
|  | complex_real_product_ok = false; | 
|  | static bool first = true; | 
|  | if (first) | 
|  | std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " | 
|  | << inf * RealScalar(1) << std::endl; | 
|  | first = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  |  | 
|  | // get a non-zero random factor | 
|  | Scalar factor = internal::random<Scalar>(); | 
|  | while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
|  | Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
|  |  | 
|  | factor = internal::random<Scalar>(); | 
|  | while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
|  | Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | 
|  |  | 
|  | Scalar one(1); | 
|  |  | 
|  | MatrixType vzero = MatrixType::Zero(rows, cols), vrand = MatrixType::Random(rows, cols), vbig(rows, cols), | 
|  | vsmall(rows, cols); | 
|  |  | 
|  | vbig.fill(big); | 
|  | vsmall.fill(small); | 
|  |  | 
|  | VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); | 
|  | VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); | 
|  |  | 
|  | // test with expressions as input | 
|  | VERIFY_IS_APPROX((one * vrand).stableNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX((one * vrand).blueNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX((one * vrand).hypotNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).stableNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).blueNorm(), vrand.norm()); | 
|  | VERIFY_IS_APPROX((one * vrand + one * vrand - one * vrand).hypotNorm(), vrand.norm()); | 
|  |  | 
|  | RealScalar size = static_cast<RealScalar>(m.size()); | 
|  |  | 
|  | // test numext::isfinite | 
|  | VERIFY(!(numext::isfinite)(std::numeric_limits<RealScalar>::infinity())); | 
|  | VERIFY(!(numext::isfinite)(sqrt(-abs(big)))); | 
|  |  | 
|  | // test overflow | 
|  | VERIFY((numext::isfinite)(sqrt(size) * abs(big))); | 
|  | VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size) * big));  // here the default norm must fail | 
|  | VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size) * abs(big)); | 
|  | VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size) * abs(big)); | 
|  | VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size) * abs(big)); | 
|  |  | 
|  | // test underflow | 
|  | VERIFY((numext::isfinite)(sqrt(size) * abs(small))); | 
|  | VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size) * small));  // here the default norm must fail | 
|  | VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size) * abs(small)); | 
|  | VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size) * abs(small)); | 
|  | VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size) * abs(small)); | 
|  |  | 
|  | // Test compilation of cwise() version | 
|  | VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); | 
|  | VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); | 
|  |  | 
|  | // test NaN, +inf, -inf | 
|  | MatrixType v; | 
|  | Index i = internal::random<Index>(0, rows - 1); | 
|  | Index j = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | // NaN | 
|  | { | 
|  | v = vrand; | 
|  | v(i, j) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
|  | VERIFY((numext::isnan)(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm())); | 
|  | VERIFY((numext::isnan)(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | VERIFY((numext::isnan)(v.stableNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm())); | 
|  | VERIFY((numext::isnan)(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
|  | VERIFY((numext::isnan)(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // +inf | 
|  | { | 
|  | v = vrand; | 
|  | v(i, j) = std::numeric_limits<RealScalar>::infinity(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
|  | VERIFY(isPlusInf(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm())); | 
|  | VERIFY(isPlusInf(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | if (complex_real_product_ok) { | 
|  | VERIFY(isPlusInf(v.stableNorm())); | 
|  | } | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm())); | 
|  | VERIFY(isPlusInf(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
|  | VERIFY(isPlusInf(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // -inf | 
|  | { | 
|  | v = vrand; | 
|  | v(i, j) = -std::numeric_limits<RealScalar>::infinity(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
|  | VERIFY(isPlusInf(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm())); | 
|  | VERIFY(isPlusInf(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | if (complex_real_product_ok) { | 
|  | VERIFY(isPlusInf(v.stableNorm())); | 
|  | } | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm())); | 
|  | VERIFY(isPlusInf(v.blueNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
|  | VERIFY(isPlusInf(v.hypotNorm())); | 
|  | } | 
|  |  | 
|  | // mix | 
|  | { | 
|  | Index i2 = internal::random<Index>(0, rows - 1); | 
|  | Index j2 = internal::random<Index>(0, cols - 1); | 
|  | v = vrand; | 
|  | v(i, j) = -std::numeric_limits<RealScalar>::infinity(); | 
|  | v(i2, j2) = std::numeric_limits<RealScalar>::quiet_NaN(); | 
|  | VERIFY(!(numext::isfinite)(v.squaredNorm())); | 
|  | VERIFY((numext::isnan)(v.squaredNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.norm())); | 
|  | VERIFY((numext::isnan)(v.norm())); | 
|  | VERIFY(!(numext::isfinite)(v.stableNorm())); | 
|  | VERIFY((numext::isnan)(v.stableNorm())); | 
|  | VERIFY(!(numext::isfinite)(v.blueNorm())); | 
|  | VERIFY((numext::isnan)(v.blueNorm())); | 
|  | if (i2 != i || j2 != j) { | 
|  | // hypot propagates inf over NaN. | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
|  | VERIFY((numext::isinf)(v.hypotNorm())); | 
|  | } else { | 
|  | // inf is overwritten by NaN, expect norm to be NaN. | 
|  | VERIFY(!(numext::isfinite)(v.hypotNorm())); | 
|  | VERIFY((numext::isnan)(v.hypotNorm())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // stableNormalize[d] | 
|  | { | 
|  | VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized()); | 
|  | MatrixType vcopy(vrand); | 
|  | vcopy.stableNormalize(); | 
|  | VERIFY_IS_APPROX(vcopy, vrand.normalized()); | 
|  | VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1)); | 
|  | VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1)); | 
|  | VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1)); | 
|  | VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1)); | 
|  | RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
|  | VERIFY_IS_APPROX(vbig / big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval() / big_scaling); | 
|  | VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_empty() { | 
|  | Eigen::VectorXf empty(0); | 
|  | VERIFY_IS_EQUAL(empty.stableNorm(), 0.0f); | 
|  | } | 
|  |  | 
|  | template <typename Scalar> | 
|  | void test_hypot() { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | Scalar factor = internal::random<Scalar>(); | 
|  | while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
|  | Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); | 
|  |  | 
|  | factor = internal::random<Scalar>(); | 
|  | while (numext::abs2(factor) < RealScalar(1e-4)) factor = internal::random<Scalar>(); | 
|  | Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); | 
|  |  | 
|  | Scalar one(1), zero(0), sqrt2(std::sqrt(2)), nan(std::numeric_limits<RealScalar>::quiet_NaN()); | 
|  |  | 
|  | Scalar a = internal::random<Scalar>(-1, 1); | 
|  | Scalar b = internal::random<Scalar>(-1, 1); | 
|  | VERIFY_IS_APPROX(numext::hypot(a, b), std::sqrt(numext::abs2(a) + numext::abs2(b))); | 
|  | VERIFY_IS_EQUAL(numext::hypot(zero, zero), zero); | 
|  | VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2); | 
|  | VERIFY_IS_APPROX(numext::hypot(big, big), sqrt2 * numext::abs(big)); | 
|  | VERIFY_IS_APPROX(numext::hypot(small, small), sqrt2 * numext::abs(small)); | 
|  | VERIFY_IS_APPROX(numext::hypot(small, big), numext::abs(big)); | 
|  | VERIFY((numext::isnan)(numext::hypot(nan, a))); | 
|  | VERIFY((numext::isnan)(numext::hypot(a, nan))); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(stable_norm) { | 
|  | CALL_SUBTEST_1(test_empty()); | 
|  |  | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_3(test_hypot<double>()); | 
|  | CALL_SUBTEST_4(test_hypot<float>()); | 
|  | CALL_SUBTEST_5(test_hypot<std::complex<double> >()); | 
|  | CALL_SUBTEST_6(test_hypot<std::complex<float> >()); | 
|  |  | 
|  | CALL_SUBTEST_1(stable_norm(Matrix<float, 1, 1>())); | 
|  | CALL_SUBTEST_2(stable_norm(Vector4d())); | 
|  | CALL_SUBTEST_3(stable_norm(VectorXd(internal::random<int>(10, 2000)))); | 
|  | CALL_SUBTEST_3(stable_norm(MatrixXd(internal::random<int>(10, 200), internal::random<int>(10, 200)))); | 
|  | CALL_SUBTEST_4(stable_norm(VectorXf(internal::random<int>(10, 2000)))); | 
|  | CALL_SUBTEST_5(stable_norm(VectorXcd(internal::random<int>(10, 2000)))); | 
|  | CALL_SUBTEST_6(stable_norm(VectorXcf(internal::random<int>(10, 2000)))); | 
|  | } | 
|  | } |