|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <iterator> | 
|  | #include <numeric> | 
|  |  | 
|  | template <class Iterator> | 
|  | std::reverse_iterator<Iterator> make_reverse_iterator(Iterator i) { | 
|  | return std::reverse_iterator<Iterator>(i); | 
|  | } | 
|  |  | 
|  | using std::is_sorted; | 
|  |  | 
|  | template <typename XprType> | 
|  | bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType>&) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename XprType> | 
|  | bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType>&) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename Iter> | 
|  | bool is_default_constructible_and_assignable(const Iter& it) { | 
|  | VERIFY(std::is_default_constructible<Iter>::value); | 
|  | VERIFY(std::is_nothrow_default_constructible<Iter>::value); | 
|  | Iter it2; | 
|  | it2 = it; | 
|  | return (it == it2); | 
|  | } | 
|  |  | 
|  | template <typename Xpr> | 
|  | void check_begin_end_for_loop(Xpr xpr) { | 
|  | const Xpr& cxpr(xpr); | 
|  | Index i = 0; | 
|  |  | 
|  | i = 0; | 
|  | for (typename Xpr::iterator it = xpr.begin(); it != xpr.end(); ++it) { | 
|  | VERIFY_IS_EQUAL(*it, xpr[i++]); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (typename Xpr::const_iterator it = xpr.cbegin(); it != xpr.cend(); ++it) { | 
|  | VERIFY_IS_EQUAL(*it, xpr[i++]); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (typename Xpr::const_iterator it = cxpr.begin(); it != cxpr.end(); ++it) { | 
|  | VERIFY_IS_EQUAL(*it, xpr[i++]); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (typename Xpr::const_iterator it = xpr.begin(); it != xpr.end(); ++it) { | 
|  | VERIFY_IS_EQUAL(*it, xpr[i++]); | 
|  | } | 
|  |  | 
|  | { | 
|  | // simple API check | 
|  | typename Xpr::const_iterator cit = xpr.begin(); | 
|  | cit = xpr.cbegin(); | 
|  |  | 
|  | auto tmp1 = xpr.begin(); | 
|  | VERIFY(tmp1 == xpr.begin()); | 
|  | auto tmp2 = xpr.cbegin(); | 
|  | VERIFY(tmp2 == xpr.cbegin()); | 
|  | } | 
|  |  | 
|  | VERIFY(xpr.end() - xpr.begin() == xpr.size()); | 
|  | VERIFY(xpr.cend() - xpr.begin() == xpr.size()); | 
|  | VERIFY(xpr.end() - xpr.cbegin() == xpr.size()); | 
|  | VERIFY(xpr.cend() - xpr.cbegin() == xpr.size()); | 
|  |  | 
|  | if (xpr.size() > 0) { | 
|  | VERIFY(xpr.begin() != xpr.end()); | 
|  | VERIFY(xpr.begin() < xpr.end()); | 
|  | VERIFY(xpr.begin() <= xpr.end()); | 
|  | VERIFY(!(xpr.begin() == xpr.end())); | 
|  | VERIFY(!(xpr.begin() > xpr.end())); | 
|  | VERIFY(!(xpr.begin() >= xpr.end())); | 
|  |  | 
|  | VERIFY(xpr.cbegin() != xpr.end()); | 
|  | VERIFY(xpr.cbegin() < xpr.end()); | 
|  | VERIFY(xpr.cbegin() <= xpr.end()); | 
|  | VERIFY(!(xpr.cbegin() == xpr.end())); | 
|  | VERIFY(!(xpr.cbegin() > xpr.end())); | 
|  | VERIFY(!(xpr.cbegin() >= xpr.end())); | 
|  |  | 
|  | VERIFY(xpr.begin() != xpr.cend()); | 
|  | VERIFY(xpr.begin() < xpr.cend()); | 
|  | VERIFY(xpr.begin() <= xpr.cend()); | 
|  | VERIFY(!(xpr.begin() == xpr.cend())); | 
|  | VERIFY(!(xpr.begin() > xpr.cend())); | 
|  | VERIFY(!(xpr.begin() >= xpr.cend())); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Rows, int Cols> | 
|  | void test_stl_iterators(int rows = Rows, int cols = Cols) { | 
|  | typedef Matrix<Scalar, Rows, 1> VectorType; | 
|  | typedef Matrix<Scalar, 1, Cols> RowVectorType; | 
|  | typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType; | 
|  | typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType; | 
|  | VectorType v = VectorType::Random(rows); | 
|  | const VectorType& cv(v); | 
|  | ColMatrixType A = ColMatrixType::Random(rows, cols); | 
|  | const ColMatrixType& cA(A); | 
|  | RowMatrixType B = RowMatrixType::Random(rows, cols); | 
|  | using Eigen::placeholders::last; | 
|  |  | 
|  | Index i, j; | 
|  |  | 
|  | // Verify that iterators are default constructible (See bug #1900) | 
|  | { | 
|  | VERIFY(is_default_constructible_and_assignable(v.begin())); | 
|  | VERIFY(is_default_constructible_and_assignable(v.end())); | 
|  | VERIFY(is_default_constructible_and_assignable(cv.begin())); | 
|  | VERIFY(is_default_constructible_and_assignable(cv.end())); | 
|  |  | 
|  | VERIFY(is_default_constructible_and_assignable(A.row(0).begin())); | 
|  | VERIFY(is_default_constructible_and_assignable(A.row(0).end())); | 
|  | VERIFY(is_default_constructible_and_assignable(cA.row(0).begin())); | 
|  | VERIFY(is_default_constructible_and_assignable(cA.row(0).end())); | 
|  |  | 
|  | VERIFY(is_default_constructible_and_assignable(B.row(0).begin())); | 
|  | VERIFY(is_default_constructible_and_assignable(B.row(0).end())); | 
|  | } | 
|  |  | 
|  | // Check we got a fast pointer-based iterator when expected | 
|  | { | 
|  | VERIFY(is_pointer_based_stl_iterator(v.begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(v.end())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cv.begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cv.end())); | 
|  |  | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | VERIFY(is_pointer_based_stl_iterator(A.col(j).begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(A.col(j).end())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.col(j).begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.col(j).end())); | 
|  |  | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | VERIFY(is_pointer_based_stl_iterator(A.row(i).begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(A.row(i).end())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.row(i).begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.row(i).end())); | 
|  |  | 
|  | VERIFY(is_pointer_based_stl_iterator(A.reshaped().begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(A.reshaped().end())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.reshaped().begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(cA.reshaped().end())); | 
|  |  | 
|  | VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin())); | 
|  | VERIFY(is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end())); | 
|  |  | 
|  | VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin())); | 
|  | VERIFY(is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end())); | 
|  | } | 
|  |  | 
|  | { | 
|  | check_begin_end_for_loop(v); | 
|  | check_begin_end_for_loop(A.col(internal::random<Index>(0, A.cols() - 1))); | 
|  | check_begin_end_for_loop(A.row(internal::random<Index>(0, A.rows() - 1))); | 
|  | check_begin_end_for_loop(v + v); | 
|  | } | 
|  |  | 
|  | // check swappable | 
|  | { | 
|  | using std::swap; | 
|  | // pointer-based | 
|  | { | 
|  | VectorType v_copy = v; | 
|  | auto a = v.begin(); | 
|  | auto b = v.end() - 1; | 
|  | swap(a, b); | 
|  | VERIFY_IS_EQUAL(v, v_copy); | 
|  | VERIFY_IS_EQUAL(*b, *v.begin()); | 
|  | VERIFY_IS_EQUAL(*b, v(0)); | 
|  | VERIFY_IS_EQUAL(*a, v.end()[-1]); | 
|  | VERIFY_IS_EQUAL(*a, v(last)); | 
|  | } | 
|  |  | 
|  | // generic | 
|  | { | 
|  | RowMatrixType B_copy = B; | 
|  | auto Br = B.reshaped(); | 
|  | auto a = Br.begin(); | 
|  | auto b = Br.end() - 1; | 
|  | swap(a, b); | 
|  | VERIFY_IS_EQUAL(B, B_copy); | 
|  | VERIFY_IS_EQUAL(*b, *Br.begin()); | 
|  | VERIFY_IS_EQUAL(*b, Br(0)); | 
|  | VERIFY_IS_EQUAL(*a, Br.end()[-1]); | 
|  | VERIFY_IS_EQUAL(*a, Br(last)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check non-const iterator with for-range loops | 
|  | { | 
|  | i = 0; | 
|  | for (auto x : v) { | 
|  | VERIFY_IS_EQUAL(x, v[i++]); | 
|  | } | 
|  |  | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | i = 0; | 
|  | for (auto x : A.col(j)) { | 
|  | VERIFY_IS_EQUAL(x, A(i++, j)); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (auto x : (v + A.col(j))) { | 
|  | VERIFY_IS_APPROX(x, v(i) + A(i, j)); | 
|  | ++i; | 
|  | } | 
|  |  | 
|  | j = 0; | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | for (auto x : A.row(i)) { | 
|  | VERIFY_IS_EQUAL(x, A(i, j++)); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (auto x : A.reshaped()) { | 
|  | VERIFY_IS_EQUAL(x, A(i++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // same for const_iterator | 
|  | { | 
|  | i = 0; | 
|  | for (auto x : cv) { | 
|  | VERIFY_IS_EQUAL(x, v[i++]); | 
|  | } | 
|  |  | 
|  | i = 0; | 
|  | for (auto x : cA.reshaped()) { | 
|  | VERIFY_IS_EQUAL(x, A(i++)); | 
|  | } | 
|  |  | 
|  | j = 0; | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | for (auto x : cA.row(i)) { | 
|  | VERIFY_IS_EQUAL(x, A(i, j++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check reshaped() on row-major | 
|  | { | 
|  | i = 0; | 
|  | Matrix<Scalar, Dynamic, Dynamic, ColMajor> Bc = B; | 
|  | for (auto x : B.reshaped()) { | 
|  | VERIFY_IS_EQUAL(x, Bc(i++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check write access | 
|  | { | 
|  | VectorType w(v.size()); | 
|  | i = 0; | 
|  | for (auto& x : w) { | 
|  | x = v(i++); | 
|  | } | 
|  | VERIFY_IS_EQUAL(v, w); | 
|  | } | 
|  |  | 
|  | // check for dangling pointers | 
|  | { | 
|  | // no dangling because pointer-based | 
|  | { | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | auto it = A.col(j).begin(); | 
|  | for (i = 0; i < rows; ++i) { | 
|  | VERIFY_IS_EQUAL(it[i], A(i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // no dangling because pointer-based | 
|  | { | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | auto it = A.row(i).begin(); | 
|  | for (j = 0; j < cols; ++j) { | 
|  | VERIFY_IS_EQUAL(it[j], A(i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | // this would produce a dangling pointer: | 
|  | // auto it = (A+2*A).col(j).begin(); | 
|  | // we need to name the temporary expression: | 
|  | auto tmp = (A + 2 * A).col(j); | 
|  | auto it = tmp.begin(); | 
|  | for (i = 0; i < rows; ++i) { | 
|  | VERIFY_IS_APPROX(it[i], 3 * A(i, j)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | // check basic for loop on vector-wise iterators | 
|  | j = 0; | 
|  | for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { | 
|  | VERIFY_IS_APPROX(it->coeff(0), A(0, j)); | 
|  | VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); | 
|  | } | 
|  | j = 0; | 
|  | for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { | 
|  | (*it).coeffRef(0) = (*it).coeff(0);  // compilation check | 
|  | it->coeffRef(0) = it->coeff(0);      // compilation check | 
|  | VERIFY_IS_APPROX(it->coeff(0), A(0, j)); | 
|  | VERIFY_IS_APPROX((*it).coeff(0), A(0, j)); | 
|  | } | 
|  |  | 
|  | // check valuetype gives us a copy | 
|  | j = 0; | 
|  | for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { | 
|  | typename decltype(it)::value_type tmp = *it; | 
|  | VERIFY_IS_NOT_EQUAL(tmp.data(), it->data()); | 
|  | VERIFY_IS_APPROX(tmp, A.col(j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rows >= 3) { | 
|  | VERIFY_IS_EQUAL((v.begin() + rows / 2)[1], v(rows / 2 + 1)); | 
|  |  | 
|  | VERIFY_IS_EQUAL((A.rowwise().begin() + rows / 2)[1], A.row(rows / 2 + 1)); | 
|  | } | 
|  |  | 
|  | if (cols >= 3) { | 
|  | VERIFY_IS_EQUAL((A.colwise().begin() + cols / 2)[1], A.col(cols / 2 + 1)); | 
|  | } | 
|  |  | 
|  | // check std::sort | 
|  | { | 
|  | // first check that is_sorted returns false when required | 
|  | if (rows >= 2) { | 
|  | v(1) = v(0) - Scalar(1); | 
|  | VERIFY(!is_sorted(std::begin(v), std::end(v))); | 
|  | } | 
|  |  | 
|  | // on a vector | 
|  | { | 
|  | std::sort(v.begin(), v.end()); | 
|  | VERIFY(is_sorted(v.begin(), v.end())); | 
|  | VERIFY(!::is_sorted(make_reverse_iterator(v.end()), make_reverse_iterator(v.begin()))); | 
|  | } | 
|  |  | 
|  | // on a column of a column-major matrix -> pointer-based iterator and default increment | 
|  | { | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators | 
|  | typename ColMatrixType::ColXpr Acol = A.col(j); | 
|  | std::sort(Acol.begin(), Acol.end()); | 
|  | VERIFY(is_sorted(Acol.cbegin(), Acol.cend())); | 
|  | A.setRandom(); | 
|  |  | 
|  | std::sort(A.col(j).begin(), A.col(j).end()); | 
|  | VERIFY(is_sorted(A.col(j).cbegin(), A.col(j).cend())); | 
|  | A.setRandom(); | 
|  | } | 
|  |  | 
|  | // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment | 
|  | { | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | typename ColMatrixType::RowXpr Arow = A.row(i); | 
|  | VERIFY_IS_EQUAL(std::distance(Arow.begin(), Arow.end()), cols); | 
|  | std::sort(Arow.begin(), Arow.end()); | 
|  | VERIFY(is_sorted(Arow.cbegin(), Arow.cend())); | 
|  | A.setRandom(); | 
|  |  | 
|  | std::sort(A.row(i).begin(), A.row(i).end()); | 
|  | VERIFY(is_sorted(A.row(i).cbegin(), A.row(i).cend())); | 
|  | A.setRandom(); | 
|  | } | 
|  |  | 
|  | // with a generic iterator | 
|  | { | 
|  | Reshaped<RowMatrixType, RowMatrixType::SizeAtCompileTime, 1> B1 = B.reshaped(); | 
|  | std::sort(B1.begin(), B1.end()); | 
|  | VERIFY(is_sorted(B1.cbegin(), B1.cend())); | 
|  | B.setRandom(); | 
|  |  | 
|  | // assertion because nested expressions are different | 
|  | // std::sort(B.reshaped().begin(),B.reshaped().end()); | 
|  | // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); | 
|  | // B.setRandom(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check with partial_sum | 
|  | { | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | typename ColMatrixType::ColXpr Acol = A.col(j); | 
|  | std::partial_sum(Acol.begin(), Acol.end(), v.begin()); | 
|  | VERIFY_IS_APPROX(v(seq(1, last)), v(seq(0, last - 1)) + Acol(seq(1, last))); | 
|  |  | 
|  | // inplace | 
|  | std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); | 
|  | VERIFY_IS_APPROX(v, Acol); | 
|  | } | 
|  |  | 
|  | // stress random access as required by std::nth_element | 
|  | if (rows >= 3) { | 
|  | v.setRandom(); | 
|  | VectorType v1 = v; | 
|  | std::sort(v1.begin(), v1.end()); | 
|  | std::nth_element(v.begin(), v.begin() + rows / 2, v.end()); | 
|  | VERIFY_IS_APPROX(v1(rows / 2), v(rows / 2)); | 
|  |  | 
|  | v.setRandom(); | 
|  | v1 = v; | 
|  | std::sort(v1.begin() + rows / 2, v1.end()); | 
|  | std::nth_element(v.begin() + rows / 2, v.begin() + rows / 4, v.end()); | 
|  | VERIFY_IS_APPROX(v1(rows / 4), v(rows / 4)); | 
|  | } | 
|  |  | 
|  | // check rows/cols iterators with range-for loops | 
|  | { | 
|  | j = 0; | 
|  | for (auto c : A.colwise()) { | 
|  | VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); | 
|  | ++j; | 
|  | } | 
|  | j = 0; | 
|  | for (auto c : B.colwise()) { | 
|  | VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); | 
|  | ++j; | 
|  | } | 
|  |  | 
|  | j = 0; | 
|  | for (auto c : B.colwise()) { | 
|  | i = 0; | 
|  | for (auto& x : c) { | 
|  | VERIFY_IS_EQUAL(x, B(i, j)); | 
|  | x = A(i, j); | 
|  | ++i; | 
|  | } | 
|  | ++j; | 
|  | } | 
|  | VERIFY_IS_APPROX(A, B); | 
|  | B.setRandom(); | 
|  |  | 
|  | i = 0; | 
|  | for (auto r : A.rowwise()) { | 
|  | VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); | 
|  | ++i; | 
|  | } | 
|  | i = 0; | 
|  | for (auto r : B.rowwise()) { | 
|  | VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); | 
|  | ++i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // check rows/cols iterators with STL algorithms | 
|  | { | 
|  | RowVectorType row = RowVectorType::Random(cols); | 
|  | VectorType col = VectorType::Random(rows); | 
|  | // Prevent overflows for integer types. | 
|  | if (Eigen::NumTraits<Scalar>::IsInteger) { | 
|  | Scalar kMaxVal = Scalar(1000); | 
|  | row.array() = row.array() - kMaxVal * (row.array() / kMaxVal); | 
|  | col.array() = col.array() - kMaxVal * (col.array() / kMaxVal); | 
|  | } | 
|  | A.rowwise() = row; | 
|  | VERIFY(std::all_of(A.rowwise().begin(), A.rowwise().end(), [&row](typename ColMatrixType::RowXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), row.squaredNorm()); | 
|  | })); | 
|  | VERIFY(std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), row.squaredNorm()); | 
|  | })); | 
|  |  | 
|  | A.colwise() = col; | 
|  | VERIFY(std::all_of(A.colwise().begin(), A.colwise().end(), [&col](typename ColMatrixType::ColXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), col.squaredNorm()); | 
|  | })); | 
|  | VERIFY(std::all_of(A.colwise().rbegin(), A.colwise().rend(), [&col](typename ColMatrixType::ColXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), col.squaredNorm()); | 
|  | })); | 
|  | VERIFY(std::all_of(A.colwise().cbegin(), A.colwise().cend(), [&col](typename ColMatrixType::ConstColXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), col.squaredNorm()); | 
|  | })); | 
|  | VERIFY(std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { | 
|  | return internal::isApprox(x.squaredNorm(), col.squaredNorm()); | 
|  | })); | 
|  |  | 
|  | i = internal::random<Index>(0, A.rows() - 1); | 
|  | A.setRandom(); | 
|  | A.row(i).setZero(); | 
|  | VERIFY_IS_EQUAL( | 
|  | std::find_if(A.rowwise().begin(), A.rowwise().end(), | 
|  | [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - | 
|  | A.rowwise().begin(), | 
|  | i); | 
|  | VERIFY_IS_EQUAL( | 
|  | std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), | 
|  | [](typename ColMatrixType::RowXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - | 
|  | A.rowwise().rbegin(), | 
|  | (A.rows() - 1) - i); | 
|  |  | 
|  | j = internal::random<Index>(0, A.cols() - 1); | 
|  | A.setRandom(); | 
|  | A.col(j).setZero(); | 
|  | VERIFY_IS_EQUAL( | 
|  | std::find_if(A.colwise().begin(), A.colwise().end(), | 
|  | [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - | 
|  | A.colwise().begin(), | 
|  | j); | 
|  | VERIFY_IS_EQUAL( | 
|  | std::find_if(A.colwise().rbegin(), A.colwise().rend(), | 
|  | [](typename ColMatrixType::ColXpr x) { return numext::is_exactly_zero(x.squaredNorm()); }) - | 
|  | A.colwise().rbegin(), | 
|  | (A.cols() - 1) - j); | 
|  | } | 
|  |  | 
|  | { | 
|  | using VecOp = VectorwiseOp<ArrayXXi, 0>; | 
|  | STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value)); | 
|  | STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend())>::value)); | 
|  | STATIC_CHECK( | 
|  | (internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value)); | 
|  | STATIC_CHECK((internal::is_same<VecOp::const_iterator, decltype(std::cend(std::declval<const VecOp&>()))>::value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // When the compiler sees expression IsContainerTest<C>(0), if C is an | 
|  | // STL-style container class, the first overload of IsContainerTest | 
|  | // will be viable (since both C::iterator* and C::const_iterator* are | 
|  | // valid types and NULL can be implicitly converted to them).  It will | 
|  | // be picked over the second overload as 'int' is a perfect match for | 
|  | // the type of argument 0.  If C::iterator or C::const_iterator is not | 
|  | // a valid type, the first overload is not viable, and the second | 
|  | // overload will be picked. | 
|  | template <class C, class Iterator = decltype(::std::declval<const C&>().begin()), | 
|  | class = decltype(::std::declval<const C&>().end()), class = decltype(++::std::declval<Iterator&>()), | 
|  | class = decltype(*::std::declval<Iterator>()), class = typename C::const_iterator> | 
|  | bool IsContainerType(int /* dummy */) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <class C> | 
|  | bool IsContainerType(long /* dummy */) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <typename Scalar, int Rows, int Cols> | 
|  | void test_stl_container_detection(int rows = Rows, int cols = Cols) { | 
|  | typedef Matrix<Scalar, Rows, 1> VectorType; | 
|  | typedef Matrix<Scalar, Rows, Cols, ColMajor> ColMatrixType; | 
|  | typedef Matrix<Scalar, Rows, Cols, RowMajor> RowMatrixType; | 
|  |  | 
|  | ColMatrixType A = ColMatrixType::Random(rows, cols); | 
|  | RowMatrixType B = RowMatrixType::Random(rows, cols); | 
|  |  | 
|  | Index i = 1; | 
|  |  | 
|  | using ColMatrixColType = decltype(A.col(i)); | 
|  | using ColMatrixRowType = decltype(A.row(i)); | 
|  | using RowMatrixColType = decltype(B.col(i)); | 
|  | using RowMatrixRowType = decltype(B.row(i)); | 
|  |  | 
|  | // Vector and matrix col/row are valid Stl-style container. | 
|  | VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true); | 
|  |  | 
|  | // But the matrix itself is not a valid Stl-style container. | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(stl_iterators) { | 
|  | for (int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1((test_stl_iterators<double, 2, 3>())); | 
|  | CALL_SUBTEST_1((test_stl_iterators<float, 7, 5>())); | 
|  | CALL_SUBTEST_1( | 
|  | (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(5, 10), internal::random<int>(5, 10)))); | 
|  | CALL_SUBTEST_1( | 
|  | (test_stl_iterators<int, Dynamic, Dynamic>(internal::random<int>(10, 200), internal::random<int>(10, 200)))); | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_1((test_stl_container_detection<float, 1, 1>())); | 
|  | CALL_SUBTEST_1((test_stl_container_detection<float, 5, 5>())); | 
|  | } |