|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #define TEST_ENABLE_TEMPORARY_TRACKING | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | template <typename ArrayType> | 
|  | void vectorwiseop_array(const ArrayType& m) { | 
|  | typedef typename ArrayType::Scalar Scalar; | 
|  | typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; | 
|  | typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); | 
|  |  | 
|  | ColVectorType colvec = ColVectorType::Random(rows); | 
|  | RowVectorType rowvec = RowVectorType::Random(cols); | 
|  |  | 
|  | // test addition | 
|  | m2 = m1; | 
|  | m2.colwise() += colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() += rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | 
|  |  | 
|  | // test subtraction | 
|  | m2 = m1; | 
|  | m2.colwise() -= colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() -= rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | 
|  |  | 
|  | // test multiplication | 
|  | m2 = m1; | 
|  | m2.colwise() *= colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() * colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() *= rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); | 
|  |  | 
|  | // test quotient | 
|  | m2 = m1; | 
|  | m2.colwise() /= colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() / colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() /= rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); | 
|  |  | 
|  | m2 = m1; | 
|  | // yes, there might be an aliasing issue there but ".rowwise() /=" | 
|  | // is supposed to evaluate " m2.colwise().sum()" into a temporary to avoid | 
|  | // evaluating the reduction multiple times | 
|  | if (ArrayType::RowsAtCompileTime > 2 || ArrayType::RowsAtCompileTime == Dynamic) { | 
|  | m2.rowwise() /= m2.colwise().sum(); | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() / m1.colwise().sum()); | 
|  | } | 
|  |  | 
|  | // all/any | 
|  | Array<bool, Dynamic, Dynamic> mb(rows, cols); | 
|  | mb = (m1.real() <= 0.7).colwise().all(); | 
|  | VERIFY((mb.col(c) == (m1.real().col(c) <= 0.7).all()).all()); | 
|  | mb = (m1.real() <= 0.7).rowwise().all(); | 
|  | VERIFY((mb.row(r) == (m1.real().row(r) <= 0.7).all()).all()); | 
|  |  | 
|  | mb = (m1.real() >= 0.7).colwise().any(); | 
|  | VERIFY((mb.col(c) == (m1.real().col(c) >= 0.7).any()).all()); | 
|  | mb = (m1.real() >= 0.7).rowwise().any(); | 
|  | VERIFY((mb.row(r) == (m1.real().row(r) >= 0.7).any()).all()); | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void vectorwiseop_matrix(const MatrixType& m) { | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; | 
|  | typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; | 
|  | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealColVectorType; | 
|  | typedef Matrix<RealScalar, 1, MatrixType::ColsAtCompileTime> RealRowVectorType; | 
|  | typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; | 
|  |  | 
|  | Index rows = m.rows(); | 
|  | Index cols = m.cols(); | 
|  | Index r = internal::random<Index>(0, rows - 1), c = internal::random<Index>(0, cols - 1); | 
|  |  | 
|  | MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); | 
|  |  | 
|  | ColVectorType colvec = ColVectorType::Random(rows); | 
|  | RowVectorType rowvec = RowVectorType::Random(cols); | 
|  | RealColVectorType rcres; | 
|  | RealRowVectorType rrres; | 
|  |  | 
|  | // test broadcast assignment | 
|  | m2 = m1; | 
|  | m2.colwise() = colvec; | 
|  | for (Index j = 0; j < cols; ++j) VERIFY_IS_APPROX(m2.col(j), colvec); | 
|  | m2.rowwise() = rowvec; | 
|  | for (Index i = 0; i < rows; ++i) VERIFY_IS_APPROX(m2.row(i), rowvec); | 
|  |  | 
|  | // test addition | 
|  | m2 = m1; | 
|  | m2.colwise() += colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() + colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() += rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); | 
|  |  | 
|  | // test subtraction | 
|  | m2 = m1; | 
|  | m2.colwise() -= colvec; | 
|  | VERIFY_IS_APPROX(m2, m1.colwise() - colvec); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); | 
|  |  | 
|  | m2 = m1; | 
|  | m2.rowwise() -= rowvec; | 
|  | VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); | 
|  |  | 
|  | // ------ partial reductions ------ | 
|  |  | 
|  | #define TEST_PARTIAL_REDUX_BASIC(FUNC, ROW, COL, PREPROCESS)                              \ | 
|  | {                                                                                       \ | 
|  | ROW = m1 PREPROCESS.colwise().FUNC;                                                   \ | 
|  | for (Index k = 0; k < cols; ++k) VERIFY_IS_APPROX(ROW(k), m1.col(k) PREPROCESS.FUNC); \ | 
|  | COL = m1 PREPROCESS.rowwise().FUNC;                                                   \ | 
|  | for (Index k = 0; k < rows; ++k) VERIFY_IS_APPROX(COL(k), m1.row(k) PREPROCESS.FUNC); \ | 
|  | } | 
|  |  | 
|  | TEST_PARTIAL_REDUX_BASIC(sum(), rowvec, colvec, EIGEN_EMPTY); | 
|  | TEST_PARTIAL_REDUX_BASIC(prod(), rowvec, colvec, EIGEN_EMPTY); | 
|  | TEST_PARTIAL_REDUX_BASIC(mean(), rowvec, colvec, EIGEN_EMPTY); | 
|  | TEST_PARTIAL_REDUX_BASIC(minCoeff(), rrres, rcres, .real()); | 
|  | TEST_PARTIAL_REDUX_BASIC(maxCoeff(), rrres, rcres, .real()); | 
|  | TEST_PARTIAL_REDUX_BASIC(norm(), rrres, rcres, EIGEN_EMPTY); | 
|  | TEST_PARTIAL_REDUX_BASIC(squaredNorm(), rrres, rcres, EIGEN_EMPTY); | 
|  | TEST_PARTIAL_REDUX_BASIC(redux(internal::scalar_sum_op<Scalar, Scalar>()), rowvec, colvec, EIGEN_EMPTY); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum(), m1.colwise().template lpNorm<1>()); | 
|  | VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().sum(), m1.rowwise().template lpNorm<1>()); | 
|  | VERIFY_IS_APPROX(m1.cwiseAbs().colwise().maxCoeff(), m1.colwise().template lpNorm<Infinity>()); | 
|  | VERIFY_IS_APPROX(m1.cwiseAbs().rowwise().maxCoeff(), m1.rowwise().template lpNorm<Infinity>()); | 
|  |  | 
|  | // regression for bug 1158 | 
|  | VERIFY_IS_APPROX(m1.cwiseAbs().colwise().sum().x(), m1.col(0).cwiseAbs().sum()); | 
|  |  | 
|  | // test normalized | 
|  | m2 = m1.colwise().normalized(); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | 
|  | m2 = m1.rowwise().normalized(); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | 
|  |  | 
|  | // test normalize | 
|  | m2 = m1; | 
|  | m2.colwise().normalize(); | 
|  | VERIFY_IS_APPROX(m2.col(c), m1.col(c).normalized()); | 
|  | m2 = m1; | 
|  | m2.rowwise().normalize(); | 
|  | VERIFY_IS_APPROX(m2.row(r), m1.row(r).normalized()); | 
|  |  | 
|  | // test with partial reduction of products | 
|  | Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m1m1 = m1 * m1.transpose(); | 
|  | VERIFY_IS_APPROX((m1 * m1.transpose()).colwise().sum(), m1m1.colwise().sum()); | 
|  | Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> tmp(rows); | 
|  | VERIFY_EVALUATION_COUNT(tmp = (m1 * m1.transpose()).colwise().sum(), 1); | 
|  |  | 
|  | m2 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())).eval(); | 
|  | m1 = m1.rowwise() - (m1.colwise().sum() / RealScalar(m1.rows())); | 
|  | VERIFY_IS_APPROX(m1, m2); | 
|  | VERIFY_EVALUATION_COUNT(m2 = (m1.rowwise() - m1.colwise().sum() / RealScalar(m1.rows())), | 
|  | (MatrixType::RowsAtCompileTime != 1 ? 1 : 0)); | 
|  |  | 
|  | // test empty expressions | 
|  | VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().sum().eval(), MatrixX::Zero(1, cols)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().sum().eval(), MatrixX::Zero(rows, 1)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().sum().eval(), MatrixX::Zero(1, cols)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleRows(0, 0).colwise().prod().eval(), MatrixX::Ones(1, cols)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleCols(0, fix<0>).rowwise().prod().eval(), MatrixX::Ones(rows, 1)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleRows(0, fix<0>).colwise().prod().eval(), MatrixX::Ones(1, cols)); | 
|  | VERIFY_IS_APPROX(m1.matrix().middleCols(0, 0).rowwise().squaredNorm().eval(), MatrixX::Zero(rows, 1)); | 
|  |  | 
|  | VERIFY_IS_EQUAL(m1.real().middleRows(0, 0).rowwise().maxCoeff().eval().rows(), 0); | 
|  | VERIFY_IS_EQUAL(m1.real().middleCols(0, 0).colwise().maxCoeff().eval().cols(), 0); | 
|  | VERIFY_IS_EQUAL(m1.real().middleRows(0, fix<0>).rowwise().maxCoeff().eval().rows(), 0); | 
|  | VERIFY_IS_EQUAL(m1.real().middleCols(0, fix<0>).colwise().maxCoeff().eval().cols(), 0); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(vectorwiseop) { | 
|  | CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); | 
|  | CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>())); | 
|  | CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); | 
|  | CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); | 
|  | CALL_SUBTEST_5(vectorwiseop_matrix(Matrix4f())); | 
|  | CALL_SUBTEST_5(vectorwiseop_matrix(Vector4f())); | 
|  | CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float, 4, 5>())); | 
|  | CALL_SUBTEST_6(vectorwiseop_matrix( | 
|  | MatrixXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE), internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(vectorwiseop_matrix(VectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | CALL_SUBTEST_7(vectorwiseop_matrix(RowVectorXd(internal::random<int>(1, EIGEN_TEST_MAX_SIZE)))); | 
|  | } |