|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Mark Borgerding mark a borgerding net | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_FFT_MODULE_H | 
|  | #define EIGEN_FFT_MODULE_H | 
|  |  | 
|  | #include <complex> | 
|  | #include <vector> | 
|  | #include <map> | 
|  | #include "../../Eigen/Core" | 
|  |  | 
|  | /** | 
|  | * \defgroup FFT_Module Fast Fourier Transform module | 
|  | * | 
|  | * \code | 
|  | * #include <unsupported/Eigen/FFT> | 
|  | * \endcode | 
|  | * | 
|  | * This module provides Fast Fourier transformation, with a configurable backend | 
|  | * implementation. | 
|  | * | 
|  | * The default implementation is based on kissfft. It is a small, free, and | 
|  | * reasonably efficient default. | 
|  | * | 
|  | * There are currently four implementation backend: | 
|  | * | 
|  | * - kissfft(https://github.com/mborgerding/kissfft) : Simple and not so fast, BSD-3-Clause. | 
|  | *   It is a mixed-radix Fast Fourier Transform based up on the principle, "Keep It Simple, Stupid." | 
|  | *   Notice that:kissfft fails to handle "atypically-sized" inputs(i.e., sizes with large factors),a workaround is using | 
|  | * fftw or pocketfft. | 
|  | * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. | 
|  | * - MKL (https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html) : fastest, free -- may be | 
|  | * incompatible with Eigen in GPL form. | 
|  | * - pocketfft (https://gitlab.mpcdf.mpg.de/mtr/pocketfft) : faster than kissfft, BSD 3-clause. | 
|  | *   It is a heavily modified implementation of FFTPack, with the following advantages: | 
|  | *   1.strictly C++11 compliant | 
|  | *   2.more accurate twiddle factor computation | 
|  | *   3.very fast plan generation | 
|  | *   4.worst case complexity for transform sizes with large prime factors is N*log(N), because Bluestein's algorithm is | 
|  | * used for these cases | 
|  | * | 
|  | * \section FFTDesign Design | 
|  | * | 
|  | * The following design decisions were made concerning scaling and | 
|  | * half-spectrum for real FFT. | 
|  | * | 
|  | * The intent is to facilitate generic programming and ease migrating code | 
|  | * from  Matlab/octave. | 
|  | * We think the default behavior of Eigen/FFT should favor correctness and | 
|  | * generality over speed. Of course, the caller should be able to "opt-out" from this | 
|  | * behavior and get the speed increase if they want it. | 
|  | * | 
|  | * 1) %Scaling: | 
|  | * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there | 
|  | * is a constant gain incurred after the forward&inverse transforms , so | 
|  | * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply. | 
|  | * The downside is that algorithms that worked correctly in Matlab/octave | 
|  | * don't behave the same way once implemented in C++. | 
|  | * | 
|  | * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. | 
|  | * | 
|  | * 2) Real FFT half-spectrum | 
|  | * Other libraries use only half the frequency spectrum (plus one extra | 
|  | * sample for the Nyquist bin) for a real FFT, the other half is the | 
|  | * conjugate-symmetric of the first half.  This saves them a copy and some | 
|  | * memory.  The downside is the caller needs to have special logic for the | 
|  | * number of bins in complex vs real. | 
|  | * | 
|  | * How Eigen/FFT differs: The full spectrum is returned from the forward | 
|  | * transform.  This facilitates generic template programming by obviating | 
|  | * separate specializations for real vs complex.  On the inverse | 
|  | * transform, only half the spectrum is actually used if the output type is real. | 
|  | */ | 
|  |  | 
|  | #include "../../Eigen/src/Core/util/DisableStupidWarnings.h" | 
|  |  | 
|  | // IWYU pragma: begin_exports | 
|  |  | 
|  | #ifdef EIGEN_FFTW_DEFAULT | 
|  | // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size | 
|  | #include <fftw3.h> | 
|  | #include "src/FFT/ei_fftw_impl.h" | 
|  | namespace Eigen { | 
|  | // template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work | 
|  | template <typename T> | 
|  | struct default_fft_impl : public internal::fftw_impl<T> {}; | 
|  | }  // namespace Eigen | 
|  | #elif defined EIGEN_MKL_DEFAULT | 
|  | // intel Math Kernel Library: fastest, free -- may be incompatible with Eigen in GPL form | 
|  | #include "src/FFT/ei_imklfft_impl.h" | 
|  | namespace Eigen { | 
|  | template <typename T> | 
|  | struct default_fft_impl : public internal::imklfft::imklfft_impl<T> {}; | 
|  | }  // namespace Eigen | 
|  | #elif defined EIGEN_POCKETFFT_DEFAULT | 
|  | // internal::pocketfft_impl: a heavily modified implementation of FFTPack, with many advantages. | 
|  | #include <pocketfft_hdronly.h> | 
|  | #include "src/FFT/ei_pocketfft_impl.h" | 
|  | namespace Eigen { | 
|  | template <typename T> | 
|  | struct default_fft_impl : public internal::pocketfft_impl<T> {}; | 
|  | }  // namespace Eigen | 
|  | #else | 
|  | // internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft | 
|  | #include "src/FFT/ei_kissfft_impl.h" | 
|  | namespace Eigen { | 
|  | template <typename T> | 
|  | struct default_fft_impl : public internal::kissfft_impl<T> {}; | 
|  | }  // namespace Eigen | 
|  | #endif | 
|  |  | 
|  | // IWYU pragma: end_exports | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | // | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct fft_fwd_proxy; | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct fft_inv_proxy; | 
|  |  | 
|  | namespace internal { | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct traits<fft_fwd_proxy<T_SrcMat, T_FftIfc> > { | 
|  | typedef typename T_SrcMat::PlainObject ReturnType; | 
|  | }; | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct traits<fft_inv_proxy<T_SrcMat, T_FftIfc> > { | 
|  | typedef typename T_SrcMat::PlainObject ReturnType; | 
|  | }; | 
|  | }  // namespace internal | 
|  |  | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct fft_fwd_proxy : public ReturnByValue<fft_fwd_proxy<T_SrcMat, T_FftIfc> > { | 
|  | typedef DenseIndex Index; | 
|  |  | 
|  | fft_fwd_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} | 
|  |  | 
|  | template <typename T_DestMat> | 
|  | void evalTo(T_DestMat& dst) const; | 
|  |  | 
|  | Index rows() const { return m_src.rows(); } | 
|  | Index cols() const { return m_src.cols(); } | 
|  |  | 
|  | protected: | 
|  | const T_SrcMat& m_src; | 
|  | T_FftIfc& m_ifc; | 
|  | Index m_nfft; | 
|  | }; | 
|  |  | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | struct fft_inv_proxy : public ReturnByValue<fft_inv_proxy<T_SrcMat, T_FftIfc> > { | 
|  | typedef DenseIndex Index; | 
|  |  | 
|  | fft_inv_proxy(const T_SrcMat& src, T_FftIfc& fft, Index nfft) : m_src(src), m_ifc(fft), m_nfft(nfft) {} | 
|  |  | 
|  | template <typename T_DestMat> | 
|  | void evalTo(T_DestMat& dst) const; | 
|  |  | 
|  | Index rows() const { return m_src.rows(); } | 
|  | Index cols() const { return m_src.cols(); } | 
|  |  | 
|  | protected: | 
|  | const T_SrcMat& m_src; | 
|  | T_FftIfc& m_ifc; | 
|  | Index m_nfft; | 
|  | }; | 
|  |  | 
|  | template <typename T_Scalar, typename T_Impl = default_fft_impl<T_Scalar> > | 
|  | class FFT { | 
|  | public: | 
|  | typedef T_Impl impl_type; | 
|  | typedef DenseIndex Index; | 
|  | typedef typename impl_type::Scalar Scalar; | 
|  | typedef typename impl_type::Complex Complex; | 
|  |  | 
|  | using Flag = int; | 
|  | static constexpr Flag Default = 0; | 
|  | static constexpr Flag Unscaled = 1; | 
|  | static constexpr Flag HalfSpectrum = 2; | 
|  | static constexpr Flag Speedy = 32767; | 
|  |  | 
|  | FFT(const impl_type& impl = impl_type(), Flag flags = Default) : m_impl(impl), m_flag(flags) { | 
|  | eigen_assert((flags == Default || flags == Unscaled || flags == HalfSpectrum || flags == Speedy) && | 
|  | "invalid flags argument"); | 
|  | } | 
|  |  | 
|  | inline bool HasFlag(Flag f) const { return (m_flag & (int)f) == f; } | 
|  |  | 
|  | inline void SetFlag(Flag f) { m_flag |= (int)f; } | 
|  |  | 
|  | inline void ClearFlag(Flag f) { m_flag &= (~(int)f); } | 
|  |  | 
|  | inline void fwd(Complex* dst, const Scalar* src, Index nfft) { | 
|  | m_impl.fwd(dst, src, static_cast<int>(nfft)); | 
|  | if (HasFlag(HalfSpectrum) == false) ReflectSpectrum(dst, nfft); | 
|  | } | 
|  |  | 
|  | inline void fwd(Complex* dst, const Complex* src, Index nfft) { m_impl.fwd(dst, src, static_cast<int>(nfft)); } | 
|  |  | 
|  | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT | 
|  | inline void fwd2(Complex* dst, const Complex* src, int n0, int n1) { m_impl.fwd2(dst, src, n0, n1); } | 
|  | #endif | 
|  |  | 
|  | template <typename Input_> | 
|  | inline void fwd(std::vector<Complex>& dst, const std::vector<Input_>& src) { | 
|  | if (NumTraits<Input_>::IsComplex == 0 && HasFlag(HalfSpectrum)) | 
|  | dst.resize((src.size() >> 1) + 1);  // half the bins + Nyquist bin | 
|  | else | 
|  | dst.resize(src.size()); | 
|  | fwd(&dst[0], &src[0], src.size()); | 
|  | } | 
|  |  | 
|  | template <typename InputDerived, typename ComplexDerived> | 
|  | inline void fwd(MatrixBase<ComplexDerived>& dst, const MatrixBase<InputDerived>& src, Index nfft = -1) { | 
|  | typedef typename ComplexDerived::Scalar dst_type; | 
|  | typedef typename InputDerived::Scalar src_type; | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | 
|  | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, InputDerived)  // size at compile-time | 
|  | EIGEN_STATIC_ASSERT( | 
|  | (internal::is_same<dst_type, Complex>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  | EIGEN_STATIC_ASSERT(int(InputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, | 
|  | THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | 
|  |  | 
|  | if (nfft < 1) nfft = src.size(); | 
|  |  | 
|  | if (NumTraits<src_type>::IsComplex == 0 && HasFlag(HalfSpectrum)) | 
|  | dst.derived().resize((nfft >> 1) + 1); | 
|  | else | 
|  | dst.derived().resize(nfft); | 
|  |  | 
|  | if (src.innerStride() != 1 || src.size() < nfft) { | 
|  | Matrix<src_type, 1, Dynamic> tmp; | 
|  | if (src.size() < nfft) { | 
|  | tmp.setZero(nfft); | 
|  | tmp.block(0, 0, src.size(), 1) = src; | 
|  | } else { | 
|  | tmp = src; | 
|  | } | 
|  | fwd(&dst[0], &tmp[0], nfft); | 
|  | } else { | 
|  | fwd(&dst[0], &src[0], nfft); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename InputDerived> | 
|  | inline fft_fwd_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> > fwd(const MatrixBase<InputDerived>& src, | 
|  | Index nfft = -1) { | 
|  | return fft_fwd_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> >(src, *this, nfft); | 
|  | } | 
|  |  | 
|  | template <typename InputDerived> | 
|  | inline fft_inv_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> > inv(const MatrixBase<InputDerived>& src, | 
|  | Index nfft = -1) { | 
|  | return fft_inv_proxy<MatrixBase<InputDerived>, FFT<T_Scalar, T_Impl> >(src, *this, nfft); | 
|  | } | 
|  |  | 
|  | inline void inv(Complex* dst, const Complex* src, Index nfft) { | 
|  | m_impl.inv(dst, src, static_cast<int>(nfft)); | 
|  | if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft);  // scale the time series | 
|  | } | 
|  |  | 
|  | inline void inv(Scalar* dst, const Complex* src, Index nfft) { | 
|  | m_impl.inv(dst, src, static_cast<int>(nfft)); | 
|  | if (HasFlag(Unscaled) == false) scale(dst, Scalar(1. / nfft), nfft);  // scale the time series | 
|  | } | 
|  |  | 
|  | template <typename OutputDerived, typename ComplexDerived> | 
|  | inline void inv(MatrixBase<OutputDerived>& dst, const MatrixBase<ComplexDerived>& src, Index nfft = -1) { | 
|  | typedef typename ComplexDerived::Scalar src_type; | 
|  | typedef typename ComplexDerived::RealScalar real_type; | 
|  | typedef typename OutputDerived::Scalar dst_type; | 
|  | const bool realfft = (NumTraits<dst_type>::IsComplex == 0); | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) | 
|  | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived, OutputDerived)  // size at compile-time | 
|  | EIGEN_STATIC_ASSERT( | 
|  | (internal::is_same<src_type, Complex>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
|  | EIGEN_STATIC_ASSERT(int(OutputDerived::Flags) & int(ComplexDerived::Flags) & DirectAccessBit, | 
|  | THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) | 
|  |  | 
|  | if (nfft < 1) {  // automatic FFT size determination | 
|  | if (realfft && HasFlag(HalfSpectrum)) | 
|  | nfft = 2 * (src.size() - 1);  // assume even fft size | 
|  | else | 
|  | nfft = src.size(); | 
|  | } | 
|  | dst.derived().resize(nfft); | 
|  |  | 
|  | // check for nfft that does not fit the input data size | 
|  | Index resize_input = (realfft && HasFlag(HalfSpectrum)) ? ((nfft / 2 + 1) - src.size()) : (nfft - src.size()); | 
|  |  | 
|  | if (src.innerStride() != 1 || resize_input) { | 
|  | // if the vector is strided, then we need to copy it to a packed temporary | 
|  | Matrix<src_type, 1, Dynamic> tmp; | 
|  | if (resize_input) { | 
|  | size_t ncopy = (std::min)(src.size(), src.size() + resize_input); | 
|  | tmp.setZero(src.size() + resize_input); | 
|  | if (realfft && HasFlag(HalfSpectrum)) { | 
|  | // pad at the Nyquist bin | 
|  | tmp.head(ncopy) = src.head(ncopy); | 
|  | tmp(ncopy - 1) = real(tmp(ncopy - 1));  // enforce real-only Nyquist bin | 
|  | } else { | 
|  | size_t nhead, ntail; | 
|  | nhead = 1 + ncopy / 2 - 1;  // range  [0:pi) | 
|  | ntail = ncopy / 2 - 1;      // range (-pi:0) | 
|  | tmp.head(nhead) = src.head(nhead); | 
|  | tmp.tail(ntail) = src.tail(ntail); | 
|  | if (resize_input < | 
|  | 0) {  // shrinking -- create the Nyquist bin as the average of the two bins that fold into it | 
|  | tmp(nhead) = (src(nfft / 2) + src(src.size() - nfft / 2)) * real_type(.5); | 
|  | } else {  // expanding -- split the old Nyquist bin into two halves | 
|  | tmp(nhead) = src(nhead) * real_type(.5); | 
|  | tmp(tmp.size() - nhead) = tmp(nhead); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | tmp = src; | 
|  | } | 
|  | inv(&dst[0], &tmp[0], nfft); | 
|  | } else { | 
|  | inv(&dst[0], &src[0], nfft); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename Output_> | 
|  | inline void inv(std::vector<Output_>& dst, const std::vector<Complex>& src, Index nfft = -1) { | 
|  | if (nfft < 1) | 
|  | nfft = (NumTraits<Output_>::IsComplex == 0 && HasFlag(HalfSpectrum)) ? 2 * (src.size() - 1) : src.size(); | 
|  | dst.resize(nfft); | 
|  | inv(&dst[0], &src[0], nfft); | 
|  | } | 
|  |  | 
|  | #if defined EIGEN_FFTW_DEFAULT || defined EIGEN_POCKETFFT_DEFAULT || defined EIGEN_MKL_DEFAULT | 
|  | inline void inv2(Complex* dst, const Complex* src, int n0, int n1) { | 
|  | m_impl.inv2(dst, src, n0, n1); | 
|  | if (HasFlag(Unscaled) == false) scale(dst, 1. / (n0 * n1), n0 * n1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | inline impl_type& impl() { return m_impl; } | 
|  |  | 
|  | private: | 
|  | template <typename T_Data> | 
|  | inline void scale(T_Data* x, Scalar s, Index nx) { | 
|  | #if 1 | 
|  | for (int k = 0; k < nx; ++k) *x++ *= s; | 
|  | #else | 
|  | if (((ptrdiff_t)x) & 15) | 
|  | Matrix<T_Data, Dynamic, 1>::Map(x, nx) *= s; | 
|  | else | 
|  | Matrix<T_Data, Dynamic, 1>::MapAligned(x, nx) *= s; | 
|  | // Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | inline void ReflectSpectrum(Complex* freq, Index nfft) { | 
|  | // create the implicit right-half spectrum (conjugate-mirror of the left-half) | 
|  | Index nhbins = (nfft >> 1) + 1; | 
|  | for (Index k = nhbins; k < nfft; ++k) freq[k] = conj(freq[nfft - k]); | 
|  | } | 
|  |  | 
|  | impl_type m_impl; | 
|  | int m_flag; | 
|  | }; | 
|  |  | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | template <typename T_DestMat> | 
|  | inline void fft_fwd_proxy<T_SrcMat, T_FftIfc>::evalTo(T_DestMat& dst) const { | 
|  | m_ifc.fwd(dst, m_src, m_nfft); | 
|  | } | 
|  |  | 
|  | template <typename T_SrcMat, typename T_FftIfc> | 
|  | template <typename T_DestMat> | 
|  | inline void fft_inv_proxy<T_SrcMat, T_FftIfc>::evalTo(T_DestMat& dst) const { | 
|  | m_ifc.inv(dst, m_src, m_nfft); | 
|  | } | 
|  |  | 
|  | }  // namespace Eigen | 
|  |  | 
|  | #include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" | 
|  |  | 
|  | #endif |