| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_EULERANGLESCLASS_H  // TODO: Fix previous "EIGEN_EULERANGLES_H" definition? | 
 | #define EIGEN_EULERANGLESCLASS_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 | /** \class EulerAngles | 
 |  * | 
 |  * \ingroup EulerAngles_Module | 
 |  * | 
 |  * \brief Represents a rotation in a 3 dimensional space as three Euler angles. | 
 |  * | 
 |  * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as | 
 |  * a template parameter. | 
 |  * | 
 |  * Here is how intrinsic Euler angles works: | 
 |  *  - first, rotate the axes system over the alpha axis in angle alpha | 
 |  *  - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta | 
 |  *  - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma | 
 |  * | 
 |  * \note This class support only intrinsic Euler angles for simplicity, | 
 |  *  see EulerSystem how to easily overcome this for extrinsic systems. | 
 |  * | 
 |  * ### Rotation representation and conversions ### | 
 |  * | 
 |  * It has been proved(see Wikipedia link below) that every rotation can be represented | 
 |  *  by Euler angles, but there is no single representation (e.g. unlike rotation matrices). | 
 |  * Therefore, you can convert from Eigen rotation and to them | 
 |  *  (including rotation matrices, which is not called "rotations" by Eigen design). | 
 |  * | 
 |  * Euler angles usually used for: | 
 |  *  - convenient human representation of rotation, especially in interactive GUI. | 
 |  *  - gimbal systems and robotics | 
 |  *  - efficient encoding(i.e. 3 floats only) of rotation for network protocols. | 
 |  * | 
 |  * However, Euler angles are slow comparing to quaternion or matrices, | 
 |  *  because their unnatural math definition, although it's simple for human. | 
 |  * To overcome this, this class provide easy movement from the math friendly representation | 
 |  *  to the human friendly representation, and vise-versa. | 
 |  * | 
 |  * All the user need to do is a safe simple C++ type conversion, | 
 |  *  and this class take care for the math. | 
 |  * Additionally, some axes related computation is done in compile time. | 
 |  * | 
 |  * #### Euler angles ranges in conversions #### | 
 |  * Rotations representation as EulerAngles are not single (unlike matrices), | 
 |  *  and even have infinite EulerAngles representations.<BR> | 
 |  * For example, add or subtract 2*PI from either angle of EulerAngles | 
 |  *  and you'll get the same rotation. | 
 |  * This is the general reason for infinite representation, | 
 |  *  but it's not the only general reason for not having a single representation. | 
 |  * | 
 |  * When converting rotation to EulerAngles, this class convert it to specific ranges | 
 |  * When converting some rotation to EulerAngles, the rules for ranges are as follow: | 
 |  * - If the rotation we converting from is an EulerAngles | 
 |  *  (even when it represented as RotationBase explicitly), angles ranges are __undefined__. | 
 |  * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> | 
 |  *   As for Beta angle: | 
 |  *    - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | 
 |  *    - otherwise: | 
 |  *      - If the beta axis is positive, the beta angle will be in the range [0, PI] | 
 |  *      - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | 
 |  * | 
 |  * \sa EulerAngles(const MatrixBase<Derived>&) | 
 |  * \sa EulerAngles(const RotationBase<Derived, 3>&) | 
 |  * | 
 |  * ### Convenient user typedefs ### | 
 |  * | 
 |  * Convenient typedefs for EulerAngles exist for float and double scalar, | 
 |  *  in a form of EulerAngles{A}{B}{C}{scalar}, | 
 |  *  e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf. | 
 |  * | 
 |  * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef. | 
 |  * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with | 
 |  *  a word that represent what you need. | 
 |  * | 
 |  * ### Example ### | 
 |  * | 
 |  * \include EulerAngles.cpp | 
 |  * Output: \verbinclude EulerAngles.out | 
 |  * | 
 |  * ### Additional reading ### | 
 |  * | 
 |  * If you're want to get more idea about how Euler system work in Eigen see EulerSystem. | 
 |  * | 
 |  * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles | 
 |  * | 
 |  * \tparam Scalar_ the scalar type, i.e. the type of the angles. | 
 |  * | 
 |  * \tparam _System the EulerSystem to use, which represents the axes of rotation. | 
 |  */ | 
 | template <typename Scalar_, class _System> | 
 | class EulerAngles : public RotationBase<EulerAngles<Scalar_, _System>, 3> { | 
 |  public: | 
 |   typedef RotationBase<EulerAngles<Scalar_, _System>, 3> Base; | 
 |  | 
 |   /** the scalar type of the angles */ | 
 |   typedef Scalar_ Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   /** the EulerSystem to use, which represents the axes of rotation. */ | 
 |   typedef _System System; | 
 |  | 
 |   typedef Matrix<Scalar, 3, 3> Matrix3;      /*!< the equivalent rotation matrix type */ | 
 |   typedef Matrix<Scalar, 3, 1> Vector3;      /*!< the equivalent 3 dimension vector type */ | 
 |   typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */ | 
 |   typedef AngleAxis<Scalar> AngleAxisType;   /*!< the equivalent angle-axis type */ | 
 |  | 
 |   /** \returns the axis vector of the first (alpha) rotation */ | 
 |   static Vector3 AlphaAxisVector() { | 
 |     const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1); | 
 |     return System::IsAlphaOpposite ? -u : u; | 
 |   } | 
 |  | 
 |   /** \returns the axis vector of the second (beta) rotation */ | 
 |   static Vector3 BetaAxisVector() { | 
 |     const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1); | 
 |     return System::IsBetaOpposite ? -u : u; | 
 |   } | 
 |  | 
 |   /** \returns the axis vector of the third (gamma) rotation */ | 
 |   static Vector3 GammaAxisVector() { | 
 |     const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1); | 
 |     return System::IsGammaOpposite ? -u : u; | 
 |   } | 
 |  | 
 |  private: | 
 |   Vector3 m_angles; | 
 |  | 
 |  public: | 
 |   /** Default constructor without initialization. */ | 
 |   EulerAngles() {} | 
 |   /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */ | 
 |   EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) : m_angles(alpha, beta, gamma) {} | 
 |  | 
 |   // TODO: Test this constructor | 
 |   /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */ | 
 |   explicit EulerAngles(const Scalar* data) : m_angles(data) {} | 
 |  | 
 |   /** Constructs and initializes an EulerAngles from either: | 
 |    *  - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), | 
 |    *  - a 3D vector expression representing Euler angles. | 
 |    * | 
 |    * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR> | 
 |    *  Alpha and gamma angles will be in the range [-PI, PI].<BR> | 
 |    *  As for Beta angle: | 
 |    *   - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | 
 |    *   - otherwise: | 
 |    *     - If the beta axis is positive, the beta angle will be in the range [0, PI] | 
 |    *     - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | 
 |    */ | 
 |   template <typename Derived> | 
 |   explicit EulerAngles(const MatrixBase<Derived>& other) { | 
 |     *this = other; | 
 |   } | 
 |  | 
 |   /** Constructs and initialize Euler angles from a rotation \p rot. | 
 |    * | 
 |    * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly), | 
 |    *  angles ranges are __undefined__. | 
 |    *  Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR> | 
 |    *  As for Beta angle: | 
 |    *   - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2]. | 
 |    *   - otherwise: | 
 |    *     - If the beta axis is positive, the beta angle will be in the range [0, PI] | 
 |    *     - If the beta axis is negative, the beta angle will be in the range [-PI, 0] | 
 |    */ | 
 |   template <typename Derived> | 
 |   EulerAngles(const RotationBase<Derived, 3>& rot) { | 
 |     System::CalcEulerAngles(*this, rot.toRotationMatrix()); | 
 |   } | 
 |  | 
 |   /*EulerAngles(const QuaternionType& q) | 
 |   { | 
 |     // TODO: Implement it in a faster way for quaternions | 
 |     // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/ | 
 |     //  we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below) | 
 |     // Currently we compute all matrix cells from quaternion. | 
 |  | 
 |     // Special case only for ZYX | 
 |     //Scalar y2 = q.y() * q.y(); | 
 |     //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); | 
 |     //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); | 
 |     //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); | 
 |   }*/ | 
 |  | 
 |   /** \returns The angle values stored in a vector (alpha, beta, gamma). */ | 
 |   const Vector3& angles() const { return m_angles; } | 
 |   /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */ | 
 |   Vector3& angles() { return m_angles; } | 
 |  | 
 |   /** \returns The value of the first angle. */ | 
 |   Scalar alpha() const { return m_angles[0]; } | 
 |   /** \returns A read-write reference to the angle of the first angle. */ | 
 |   Scalar& alpha() { return m_angles[0]; } | 
 |  | 
 |   /** \returns The value of the second angle. */ | 
 |   Scalar beta() const { return m_angles[1]; } | 
 |   /** \returns A read-write reference to the angle of the second angle. */ | 
 |   Scalar& beta() { return m_angles[1]; } | 
 |  | 
 |   /** \returns The value of the third angle. */ | 
 |   Scalar gamma() const { return m_angles[2]; } | 
 |   /** \returns A read-write reference to the angle of the third angle. */ | 
 |   Scalar& gamma() { return m_angles[2]; } | 
 |  | 
 |   /** \returns The Euler angles rotation inverse (which is as same as the negative), | 
 |    *  (-alpha, -beta, -gamma). | 
 |    */ | 
 |   EulerAngles inverse() const { | 
 |     EulerAngles res; | 
 |     res.m_angles = -m_angles; | 
 |     return res; | 
 |   } | 
 |  | 
 |   /** \returns The Euler angles rotation negative (which is as same as the inverse), | 
 |    *  (-alpha, -beta, -gamma). | 
 |    */ | 
 |   EulerAngles operator-() const { return inverse(); } | 
 |  | 
 |   /** Set \c *this from either: | 
 |    *  - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1), | 
 |    *  - a 3D vector expression representing Euler angles. | 
 |    * | 
 |    * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about | 
 |    *  angles ranges output. | 
 |    */ | 
 |   template <class Derived> | 
 |   EulerAngles& operator=(const MatrixBase<Derived>& other) { | 
 |     EIGEN_STATIC_ASSERT( | 
 |         (internal::is_same<Scalar, typename Derived::Scalar>::value), | 
 |         YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) | 
 |  | 
 |     internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived()); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // TODO: Assign and construct from another EulerAngles (with different system) | 
 |  | 
 |   /** Set \c *this from a rotation. | 
 |    * | 
 |    * See EulerAngles(const RotationBase<Derived, 3>&) for more information about | 
 |    *  angles ranges output. | 
 |    */ | 
 |   template <typename Derived> | 
 |   EulerAngles& operator=(const RotationBase<Derived, 3>& rot) { | 
 |     System::CalcEulerAngles(*this, rot.toRotationMatrix()); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
 |    * determined by \a prec. | 
 |    * | 
 |    * \sa MatrixBase::isApprox() */ | 
 |   bool isApprox(const EulerAngles& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { | 
 |     return angles().isApprox(other.angles(), prec); | 
 |   } | 
 |  | 
 |   /** \returns an equivalent 3x3 rotation matrix. */ | 
 |   Matrix3 toRotationMatrix() const { | 
 |     // TODO: Calc it faster | 
 |     return static_cast<QuaternionType>(*this).toRotationMatrix(); | 
 |   } | 
 |  | 
 |   /** Convert the Euler angles to quaternion. */ | 
 |   operator QuaternionType() const { | 
 |     return AngleAxisType(alpha(), AlphaAxisVector()) * AngleAxisType(beta(), BetaAxisVector()) * | 
 |            AngleAxisType(gamma(), GammaAxisVector()); | 
 |   } | 
 |  | 
 |   friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles) { | 
 |     s << eulerAngles.angles().transpose(); | 
 |     return s; | 
 |   } | 
 |  | 
 |   /** \returns \c *this with scalar type casted to \a NewScalarType */ | 
 |   template <typename NewScalarType> | 
 |   EulerAngles<NewScalarType, System> cast() const { | 
 |     EulerAngles<NewScalarType, System> e; | 
 |     e.angles() = angles().template cast<NewScalarType>(); | 
 |     return e; | 
 |   } | 
 | }; | 
 |  | 
 | #define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   /** \ingroup EulerAngles_Module */                                         \ | 
 |   typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX; | 
 |  | 
 | #define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX)      \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |                                                                       \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |                                                                       \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \ | 
 |   EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX) | 
 |  | 
 | EIGEN_EULER_ANGLES_TYPEDEFS(float, f) | 
 | EIGEN_EULER_ANGLES_TYPEDEFS(double, d) | 
 |  | 
 | namespace internal { | 
 | template <typename Scalar_, class _System> | 
 | struct traits<EulerAngles<Scalar_, _System> > { | 
 |   typedef Scalar_ Scalar; | 
 | }; | 
 |  | 
 | // set from a rotation matrix | 
 | template <class System, class Other> | 
 | struct eulerangles_assign_impl<System, Other, 3, 3> { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   static void run(EulerAngles<Scalar, System>& e, const Other& m) { System::CalcEulerAngles(e, m); } | 
 | }; | 
 |  | 
 | // set from a vector of Euler angles | 
 | template <class System, class Other> | 
 | struct eulerangles_assign_impl<System, Other, 3, 1> { | 
 |   typedef typename Other::Scalar Scalar; | 
 |   static void run(EulerAngles<Scalar, System>& e, const Other& vec) { e.angles() = vec; } | 
 | }; | 
 | }  // namespace internal | 
 | }  // namespace Eigen | 
 |  | 
 | #endif  // EIGEN_EULERANGLESCLASS_H |