|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> | 
|  |  | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/NumericalDiff> | 
|  |  | 
|  | // Generic functor | 
|  | template <typename Scalar_, int NX = Dynamic, int NY = Dynamic> | 
|  | struct Functor { | 
|  | typedef Scalar_ Scalar; | 
|  | enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY }; | 
|  | typedef Matrix<Scalar, InputsAtCompileTime, 1> InputType; | 
|  | typedef Matrix<Scalar, ValuesAtCompileTime, 1> ValueType; | 
|  | typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
|  |  | 
|  | int m_inputs, m_values; | 
|  |  | 
|  | Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {} | 
|  | Functor(int inputs_, int values_) : m_inputs(inputs_), m_values(values_) {} | 
|  |  | 
|  | int inputs() const { return m_inputs; } | 
|  | int values() const { return m_values; } | 
|  | }; | 
|  |  | 
|  | struct my_functor : Functor<double> { | 
|  | my_functor(void) : Functor<double>(3, 15) {} | 
|  | int operator()(const VectorXd &x, VectorXd &fvec) const { | 
|  | double tmp1, tmp2, tmp3; | 
|  | double y[15] = {1.4e-1, 1.8e-1, 2.2e-1, 2.5e-1, 2.9e-1, 3.2e-1, 3.5e-1, 3.9e-1, | 
|  | 3.7e-1, 5.8e-1, 7.3e-1, 9.6e-1, 1.34,   2.1,    4.39}; | 
|  |  | 
|  | for (int i = 0; i < values(); i++) { | 
|  | tmp1 = i + 1; | 
|  | tmp2 = 16 - i - 1; | 
|  | tmp3 = (i >= 8) ? tmp2 : tmp1; | 
|  | fvec[i] = y[i] - (x[0] + tmp1 / (x[1] * tmp2 + x[2] * tmp3)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int actual_df(const VectorXd &x, MatrixXd &fjac) const { | 
|  | double tmp1, tmp2, tmp3, tmp4; | 
|  | for (int i = 0; i < values(); i++) { | 
|  | tmp1 = i + 1; | 
|  | tmp2 = 16 - i - 1; | 
|  | tmp3 = (i >= 8) ? tmp2 : tmp1; | 
|  | tmp4 = (x[1] * tmp2 + x[2] * tmp3); | 
|  | tmp4 = tmp4 * tmp4; | 
|  | fjac(i, 0) = -1; | 
|  | fjac(i, 1) = tmp1 * tmp2 / tmp4; | 
|  | fjac(i, 2) = tmp1 * tmp3 / tmp4; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  | void test_forward() { | 
|  | VectorXd x(3); | 
|  | MatrixXd jac(15, 3); | 
|  | MatrixXd actual_jac(15, 3); | 
|  | my_functor functor; | 
|  |  | 
|  | x << 0.082, 1.13, 2.35; | 
|  |  | 
|  | // real one | 
|  | functor.actual_df(x, actual_jac); | 
|  | //    std::cout << actual_jac << std::endl << std::endl; | 
|  |  | 
|  | // using NumericalDiff | 
|  | NumericalDiff<my_functor> numDiff(functor); | 
|  | numDiff.df(x, jac); | 
|  | //    std::cout << jac << std::endl; | 
|  |  | 
|  | VERIFY_IS_APPROX(jac, actual_jac); | 
|  | } | 
|  |  | 
|  | void test_central() { | 
|  | VectorXd x(3); | 
|  | MatrixXd jac(15, 3); | 
|  | MatrixXd actual_jac(15, 3); | 
|  | my_functor functor; | 
|  |  | 
|  | x << 0.082, 1.13, 2.35; | 
|  |  | 
|  | // real one | 
|  | functor.actual_df(x, actual_jac); | 
|  |  | 
|  | // using NumericalDiff | 
|  | NumericalDiff<my_functor, Central> numDiff(functor); | 
|  | numDiff.df(x, jac); | 
|  |  | 
|  | VERIFY_IS_APPROX(jac, actual_jac); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(NumericalDiff) { | 
|  | CALL_SUBTEST(test_forward()); | 
|  | CALL_SUBTEST(test_central()); | 
|  | } |