|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::DefaultDevice; | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_evals() { | 
|  | Tensor<float, 2, DataLayout> input(3, 3); | 
|  | Tensor<float, 1, DataLayout> kernel(2); | 
|  |  | 
|  | input.setRandom(); | 
|  | kernel.setRandom(); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> result(2, 3); | 
|  | result.setZero(); | 
|  | Eigen::array<Tensor<float, 2>::Index, 1> dims3; | 
|  | dims3[0] = 0; | 
|  |  | 
|  | typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator; | 
|  | Evaluator eval(input.convolve(kernel, dims3), DefaultDevice()); | 
|  | eval.evalTo(result.data()); | 
|  | EIGEN_STATIC_ASSERT(Evaluator::NumDims == 2ul, YOU_MADE_A_PROGRAMMING_MISTAKE); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[0], 2); | 
|  | VERIFY_IS_EQUAL(eval.dimensions()[1], 3); | 
|  |  | 
|  | VERIFY_IS_APPROX(result(0, 0), input(0, 0) * kernel(0) + input(1, 0) * kernel(1));  // index 0 | 
|  | VERIFY_IS_APPROX(result(0, 1), input(0, 1) * kernel(0) + input(1, 1) * kernel(1));  // index 2 | 
|  | VERIFY_IS_APPROX(result(0, 2), input(0, 2) * kernel(0) + input(1, 2) * kernel(1));  // index 4 | 
|  | VERIFY_IS_APPROX(result(1, 0), input(1, 0) * kernel(0) + input(2, 0) * kernel(1));  // index 1 | 
|  | VERIFY_IS_APPROX(result(1, 1), input(1, 1) * kernel(0) + input(2, 1) * kernel(1));  // index 3 | 
|  | VERIFY_IS_APPROX(result(1, 2), input(1, 2) * kernel(0) + input(2, 2) * kernel(1));  // index 5 | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_expr() { | 
|  | Tensor<float, 2, DataLayout> input(3, 3); | 
|  | Tensor<float, 2, DataLayout> kernel(2, 2); | 
|  | input.setRandom(); | 
|  | kernel.setRandom(); | 
|  |  | 
|  | Tensor<float, 2, DataLayout> result(2, 2); | 
|  | Eigen::array<ptrdiff_t, 2> dims; | 
|  | dims[0] = 0; | 
|  | dims[1] = 1; | 
|  | result = input.convolve(kernel, dims); | 
|  |  | 
|  | VERIFY_IS_APPROX(result(0, 0), input(0, 0) * kernel(0, 0) + input(0, 1) * kernel(0, 1) + input(1, 0) * kernel(1, 0) + | 
|  | input(1, 1) * kernel(1, 1)); | 
|  | VERIFY_IS_APPROX(result(0, 1), input(0, 1) * kernel(0, 0) + input(0, 2) * kernel(0, 1) + input(1, 1) * kernel(1, 0) + | 
|  | input(1, 2) * kernel(1, 1)); | 
|  | VERIFY_IS_APPROX(result(1, 0), input(1, 0) * kernel(0, 0) + input(1, 1) * kernel(0, 1) + input(2, 0) * kernel(1, 0) + | 
|  | input(2, 1) * kernel(1, 1)); | 
|  | VERIFY_IS_APPROX(result(1, 1), input(1, 1) * kernel(0, 0) + input(1, 2) * kernel(0, 1) + input(2, 1) * kernel(1, 0) + | 
|  | input(2, 2) * kernel(1, 1)); | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_modes() { | 
|  | Tensor<float, 1, DataLayout> input(3); | 
|  | Tensor<float, 1, DataLayout> kernel(3); | 
|  | input(0) = 1.0f; | 
|  | input(1) = 2.0f; | 
|  | input(2) = 3.0f; | 
|  | kernel(0) = 0.5f; | 
|  | kernel(1) = 1.0f; | 
|  | kernel(2) = 0.0f; | 
|  |  | 
|  | Eigen::array<ptrdiff_t, 1> dims; | 
|  | dims[0] = 0; | 
|  | Eigen::array<std::pair<ptrdiff_t, ptrdiff_t>, 1> padding; | 
|  |  | 
|  | // Emulate VALID mode (as defined in | 
|  | // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). | 
|  | padding[0] = std::make_pair(0, 0); | 
|  | Tensor<float, 1, DataLayout> valid(1); | 
|  | valid = input.pad(padding).convolve(kernel, dims); | 
|  | VERIFY_IS_EQUAL(valid.dimension(0), 1); | 
|  | VERIFY_IS_APPROX(valid(0), 2.5f); | 
|  |  | 
|  | // Emulate SAME mode (as defined in | 
|  | // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). | 
|  | padding[0] = std::make_pair(1, 1); | 
|  | Tensor<float, 1, DataLayout> same(3); | 
|  | same = input.pad(padding).convolve(kernel, dims); | 
|  | VERIFY_IS_EQUAL(same.dimension(0), 3); | 
|  | VERIFY_IS_APPROX(same(0), 1.0f); | 
|  | VERIFY_IS_APPROX(same(1), 2.5f); | 
|  | VERIFY_IS_APPROX(same(2), 4.0f); | 
|  |  | 
|  | // Emulate FULL mode (as defined in | 
|  | // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html). | 
|  | padding[0] = std::make_pair(2, 2); | 
|  | Tensor<float, 1, DataLayout> full(5); | 
|  | full = input.pad(padding).convolve(kernel, dims); | 
|  | VERIFY_IS_EQUAL(full.dimension(0), 5); | 
|  | VERIFY_IS_APPROX(full(0), 0.0f); | 
|  | VERIFY_IS_APPROX(full(1), 1.0f); | 
|  | VERIFY_IS_APPROX(full(2), 2.5f); | 
|  | VERIFY_IS_APPROX(full(3), 4.0f); | 
|  | VERIFY_IS_APPROX(full(4), 1.5f); | 
|  | } | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_strides() { | 
|  | Tensor<float, 1, DataLayout> input(13); | 
|  | Tensor<float, 1, DataLayout> kernel(3); | 
|  | input.setRandom(); | 
|  | kernel.setRandom(); | 
|  |  | 
|  | Eigen::array<ptrdiff_t, 1> dims; | 
|  | dims[0] = 0; | 
|  | Eigen::array<ptrdiff_t, 1> stride_of_3; | 
|  | stride_of_3[0] = 3; | 
|  | Eigen::array<ptrdiff_t, 1> stride_of_2; | 
|  | stride_of_2[0] = 2; | 
|  |  | 
|  | Tensor<float, 1, DataLayout> result; | 
|  | result = input.stride(stride_of_3).convolve(kernel, dims).stride(stride_of_2); | 
|  |  | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 2); | 
|  | VERIFY_IS_APPROX(result(0), (input(0) * kernel(0) + input(3) * kernel(1) + input(6) * kernel(2))); | 
|  | VERIFY_IS_APPROX(result(1), (input(6) * kernel(0) + input(9) * kernel(1) + input(12) * kernel(2))); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(cxx11_tensor_convolution) { | 
|  | CALL_SUBTEST(test_evals<ColMajor>()); | 
|  | CALL_SUBTEST(test_evals<RowMajor>()); | 
|  | CALL_SUBTEST(test_expr<ColMajor>()); | 
|  | CALL_SUBTEST(test_expr<RowMajor>()); | 
|  | CALL_SUBTEST(test_modes<ColMajor>()); | 
|  | CALL_SUBTEST(test_modes<RowMajor>()); | 
|  | CALL_SUBTEST(test_strides<ColMajor>()); | 
|  | CALL_SUBTEST(test_strides<RowMajor>()); | 
|  | } |