| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_CHOLESKY_H |
| #define EIGEN_CHOLESKY_H |
| |
| /** \class Cholesky |
| * |
| * \brief Standard Cholesky decomposition of a matrix and associated features |
| * |
| * \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition |
| * |
| * This class performs a standard Cholesky decomposition of a symmetric, positive definite |
| * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
| * |
| * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
| * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
| * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
| * situations like generalised eigen problems with hermitian matrices. |
| * |
| * Note that during the decomposition, only the upper triangular part of A is considered. Therefore, |
| * the strict lower part does not have to store correct values. |
| * |
| * \sa MatrixBase::cholesky(), class CholeskyWithoutSquareRoot |
| */ |
| template<typename MatrixType> class Cholesky |
| { |
| public: |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| Cholesky(const MatrixType& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()) |
| { |
| compute(matrix); |
| } |
| |
| Extract<MatrixType, Lower> matrixL(void) const |
| { |
| return m_matrix; |
| } |
| |
| bool isPositiveDefinite(void) const { return m_isPositiveDefinite; } |
| |
| template<typename Derived> |
| typename Derived::Eval solve(const MatrixBase<Derived> &b) const; |
| |
| void compute(const MatrixType& matrix); |
| |
| protected: |
| /** \internal |
| * Used to compute and store L |
| * The strict upper part is not used and even not initialized. |
| */ |
| MatrixType m_matrix; |
| bool m_isPositiveDefinite; |
| }; |
| |
| /** Compute / recompute the Cholesky decomposition A = LL^* = U^*U of \a matrix |
| */ |
| template<typename MatrixType> |
| void Cholesky<MatrixType>::compute(const MatrixType& a) |
| { |
| assert(a.rows()==a.cols()); |
| const int size = a.rows(); |
| m_matrix.resize(size, size); |
| |
| RealScalar x; |
| x = ei_real(a.coeff(0,0)); |
| m_isPositiveDefinite = x > RealScalar(0) && ei_isMuchSmallerThan(ei_imag(m_matrix.coeff(0,0)), RealScalar(1)); |
| m_matrix.coeffRef(0,0) = ei_sqrt(x); |
| m_matrix.col(0).end(size-1) = a.row(0).end(size-1).adjoint() / m_matrix.coeff(0,0); |
| for (int j = 1; j < size; ++j) |
| { |
| Scalar tmp = ei_real(a.coeff(j,j)) - m_matrix.row(j).start(j).norm2(); |
| x = ei_real(tmp); |
| m_isPositiveDefinite = m_isPositiveDefinite && x > RealScalar(0) && ei_isMuchSmallerThan(ei_imag(tmp), RealScalar(1)); |
| m_matrix.coeffRef(j,j) = x = ei_sqrt(x); |
| |
| int endSize = size-j-1; |
| if (endSize>0) |
| m_matrix.col(j).end(endSize) = (a.row(j).end(endSize).adjoint() |
| - m_matrix.block(j+1, 0, endSize, j) * m_matrix.row(j).start(j).adjoint()) / x; |
| } |
| } |
| |
| /** \returns the solution of \f$ A x = b \f$ using the current decomposition of A. |
| * In other words, it returns \f$ A^{-1} b \f$ computing |
| * \f$ {L^{*}}^{-1} L^{-1} b \f$ from right to left. |
| * \param b the column vector \f$ b \f$, which can also be a matrix. |
| * |
| * Example: \include Cholesky_solve.cpp |
| * Output: \verbinclude Cholesky_solve.out |
| * |
| * \sa MatrixBase::cholesky(), CholeskyWithoutSquareRoot::solve() |
| */ |
| template<typename MatrixType> |
| template<typename Derived> |
| typename Derived::Eval Cholesky<MatrixType>::solve(const MatrixBase<Derived> &b) const |
| { |
| const int size = m_matrix.rows(); |
| ei_assert(size==b.rows()); |
| |
| return m_matrix.adjoint().template extract<Upper>().inverseProduct(matrixL().inverseProduct(b)); |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition of \c *this |
| */ |
| template<typename Derived> |
| inline const Cholesky<typename ei_eval<Derived>::type> |
| MatrixBase<Derived>::cholesky() const |
| { |
| return Cholesky<typename ei_eval<Derived>::type>(derived()); |
| } |
| |
| #endif // EIGEN_CHOLESKY_H |