| namespace Eigen { | 
 |  | 
 | /** \page TopicCustomizing_Plugins Extending MatrixBase (and other classes) | 
 |  | 
 | In this section we will see how to add custom methods to MatrixBase. Since all expressions and matrix types inherit MatrixBase, adding a method to MatrixBase make it immediately available to all expressions ! A typical use case is, for instance, to make Eigen compatible with another API. | 
 |  | 
 | You certainly know that in C++ it is not possible to add methods to an existing class. So how that's possible ? Here the trick is to include in the declaration of MatrixBase a file defined by the preprocessor token \c EIGEN_MATRIXBASE_PLUGIN: | 
 | \code | 
 | class MatrixBase { | 
 |   // ... | 
 |   #ifdef EIGEN_MATRIXBASE_PLUGIN | 
 |   #include EIGEN_MATRIXBASE_PLUGIN | 
 |   #endif | 
 | }; | 
 | \endcode | 
 | Therefore to extend MatrixBase with your own methods you just have to create a file with your method declaration and define EIGEN_MATRIXBASE_PLUGIN before you include any Eigen's header file. | 
 |  | 
 | You can extend many of the other classes used in Eigen by defining similarly named preprocessor symbols. For instance, define \c EIGEN_ARRAYBASE_PLUGIN if you want to extend the ArrayBase class. A full list of classes that can be extended in this way and the corresponding preprocessor symbols can be found on our page \ref TopicPreprocessorDirectives. | 
 |  | 
 | Here is an example of an extension file for adding methods to MatrixBase: \n | 
 | \b MatrixBaseAddons.h | 
 | \code | 
 | inline Scalar at(uint i, uint j) const { return this->operator()(i,j); } | 
 | inline Scalar& at(uint i, uint j) { return this->operator()(i,j); } | 
 | inline Scalar at(uint i) const { return this->operator[](i); } | 
 | inline Scalar& at(uint i) { return this->operator[](i); } | 
 |  | 
 | inline RealScalar squaredLength() const { return squaredNorm(); } | 
 | inline RealScalar length() const { return norm(); } | 
 | inline RealScalar invLength(void) const { return fast_inv_sqrt(squaredNorm()); } | 
 |  | 
 | template<typename OtherDerived> | 
 | inline Scalar squaredDistanceTo(const MatrixBase<OtherDerived>& other) const | 
 | { return (derived() - other.derived()).squaredNorm(); } | 
 |  | 
 | template<typename OtherDerived> | 
 | inline RealScalar distanceTo(const MatrixBase<OtherDerived>& other) const | 
 | { return internal::sqrt(derived().squaredDistanceTo(other)); } | 
 |  | 
 | inline void scaleTo(RealScalar l) { RealScalar vl = norm(); if (vl>1e-9) derived() *= (l/vl); } | 
 |  | 
 | inline Transpose<Derived> transposed() {return this->transpose();} | 
 | inline const Transpose<Derived> transposed() const {return this->transpose();} | 
 |  | 
 | inline uint minComponentId(void) const  { int i; this->minCoeff(&i); return i; } | 
 | inline uint maxComponentId(void) const  { int i; this->maxCoeff(&i); return i; } | 
 |  | 
 | template<typename OtherDerived> | 
 | void makeFloor(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMin(other.derived()); } | 
 | template<typename OtherDerived> | 
 | void makeCeil(const MatrixBase<OtherDerived>& other) { derived() = derived().cwiseMax(other.derived()); } | 
 |  | 
 | const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType> | 
 | operator+(const Scalar& scalar) const | 
 | { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const Derived, const ConstantReturnType>(derived(), Constant(rows(),cols(),scalar)); } | 
 |  | 
 | friend const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived> | 
 | operator+(const Scalar& scalar, const MatrixBase<Derived>& mat) | 
 | { return CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const ConstantReturnType, Derived>(Constant(rows(),cols(),scalar), mat.derived()); } | 
 | \endcode | 
 |  | 
 | Then one can the following declaration in the config.h or whatever prerequisites header file of his project: | 
 | \code | 
 | #define EIGEN_MATRIXBASE_PLUGIN "MatrixBaseAddons.h" | 
 | \endcode | 
 |  | 
 | */ | 
 |  | 
 | } |