| // #define EIGEN_TAUCS_SUPPORT |
| // #define EIGEN_CHOLMOD_SUPPORT |
| #include <iostream> |
| #include <Eigen/Sparse> |
| |
| // g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I |
| // /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ |
| // -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a |
| // -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a |
| // /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out |
| |
| #define NOGMM |
| #define NOMTL |
| |
| #ifndef SIZE |
| #define SIZE 10 |
| #endif |
| |
| #ifndef DENSITY |
| #define DENSITY 0.01 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 1 |
| #endif |
| |
| #include "BenchSparseUtil.h" |
| |
| #ifndef MINDENSITY |
| #define MINDENSITY 0.0004 |
| #endif |
| |
| #ifndef NBTRIES |
| #define NBTRIES 10 |
| #endif |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j = 0; _j < NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k = 0; _k < REPEAT; ++_k) { \ |
| X \ |
| } \ |
| timer.stop(); \ |
| } |
| |
| // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; |
| typedef SparseMatrix<Scalar, SelfAdjoint | LowerTriangular> EigenSparseSelfAdjointMatrix; |
| |
| void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst) { |
| dst.startFill(rows * cols * density); |
| for (int j = 0; j < cols; j++) { |
| dst.fill(j, j) = internal::random<Scalar>(10, 20); |
| for (int i = j + 1; i < rows; i++) { |
| Scalar v = (internal::random<float>(0, 1) < density) ? internal::random<Scalar>() : 0; |
| if (v != 0) dst.fill(i, j) = v; |
| } |
| } |
| dst.endFill(); |
| } |
| |
| #include <Eigen/Cholesky> |
| |
| template <int Backend> |
| void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0) { |
| std::cout << name << "..." << std::flush; |
| BenchTimer timer; |
| timer.start(); |
| SparseLLT<EigenSparseSelfAdjointMatrix, Backend> chol(sm1, flags); |
| timer.stop(); |
| std::cout << ":\t" << timer.value() << endl; |
| |
| std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n"; |
| // std::cout << "sparse\n" << chol.matrixL() << "%\n"; |
| } |
| |
| int main(int argc, char* argv[]) { |
| int rows = SIZE; |
| int cols = SIZE; |
| float density = DENSITY; |
| BenchTimer timer; |
| |
| VectorXf b = VectorXf::Random(cols); |
| VectorXf x = VectorXf::Random(cols); |
| |
| bool densedone = false; |
| |
| // for (float density = DENSITY; density>=MINDENSITY; density*=0.5) |
| // float density = 0.5; |
| { |
| EigenSparseSelfAdjointMatrix sm1(rows, cols); |
| std::cout << "Generate sparse matrix (might take a while)...\n"; |
| fillSpdMatrix(density, rows, cols, sm1); |
| std::cout << "DONE\n\n"; |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| if (!densedone) { |
| densedone = true; |
| std::cout << "Eigen Dense\t" << density * 100 << "%\n"; |
| DenseMatrix m1(rows, cols); |
| eiToDense(sm1, m1); |
| m1 = (m1 + m1.transpose()).eval(); |
| m1.diagonal() *= 0.5; |
| |
| // BENCH(LLT<DenseMatrix> chol(m1);) |
| // std::cout << "dense:\t" << timer.value() << endl; |
| |
| BenchTimer timer; |
| timer.start(); |
| LLT<DenseMatrix> chol(m1); |
| timer.stop(); |
| std::cout << "dense:\t" << timer.value() << endl; |
| int count = 0; |
| for (int j = 0; j < cols; ++j) |
| for (int i = j; i < rows; ++i) |
| if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i, j)), 0.1)) count++; |
| std::cout << "dense: " |
| << "nnz = " << count << "\n"; |
| // std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization); |
| |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization); |
| #endif |
| |
| #ifdef EIGEN_TAUCS_SUPPORT |
| doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization); |
| #endif |
| |
| #if 0 |
| // TAUCS |
| { |
| taucs_ccs_matrix A = sm1.asTaucsMatrix(); |
| |
| //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);) |
| // BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));) |
| // std::cout << "taucs:\t" << timer.value() << endl; |
| |
| taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0); |
| |
| for (int j=0; j<cols; ++j) |
| { |
| for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) |
| std::cout << chol->values.d[i] << " "; |
| } |
| } |
| |
| // CHOLMOD |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| { |
| cholmod_common c; |
| cholmod_start (&c); |
| cholmod_sparse A; |
| cholmod_factor *L; |
| |
| A = sm1.asCholmodMatrix(); |
| BenchTimer timer; |
| // timer.reset(); |
| timer.start(); |
| std::vector<int> perm(cols); |
| // std::vector<int> set(ncols); |
| for (int i=0; i<cols; ++i) |
| perm[i] = i; |
| // c.nmethods = 1; |
| // c.method[0] = 1; |
| |
| c.nmethods = 1; |
| c.method [0].ordering = CHOLMOD_NATURAL; |
| c.postorder = 0; |
| c.final_ll = 1; |
| |
| L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c); |
| timer.stop(); |
| std::cout << "cholmod/analyze:\t" << timer.value() << endl; |
| timer.reset(); |
| timer.start(); |
| cholmod_factorize(&A, L, &c); |
| timer.stop(); |
| std::cout << "cholmod/factorize:\t" << timer.value() << endl; |
| |
| cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c); |
| |
| cholmod_print_factor(L, "Factors", &c); |
| |
| cholmod_print_sparse(cholmat, "Chol", &c); |
| cholmod_write_sparse(stdout, cholmat, 0, 0, &c); |
| // |
| // cholmod_print_sparse(&A, "A", &c); |
| // cholmod_write_sparse(stdout, &A, 0, 0, &c); |
| |
| |
| // for (int j=0; j<cols; ++j) |
| // { |
| // for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i) |
| // std::cout << chol->values.s[i] << " "; |
| // } |
| } |
| #endif |
| |
| #endif |
| } |
| |
| return 0; |
| } |