| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_LDLT_H |
| #define EIGEN_LDLT_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename MatrixType_, int UpLo_> struct traits<LDLT<MatrixType_, UpLo_> > |
| : traits<MatrixType_> |
| { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef int StorageIndex; |
| enum { Flags = 0 }; |
| }; |
| |
| template<typename MatrixType, int UpLo> struct LDLT_Traits; |
| |
| // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef |
| enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; |
| } |
| |
| /** \ingroup Cholesky_Module |
| * |
| * \class LDLT |
| * |
| * \brief Robust Cholesky decomposition of a matrix with pivoting |
| * |
| * \tparam MatrixType_ the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| * \tparam UpLo_ the triangular part that will be used for the decomposition: Lower (default) or Upper. |
| * The other triangular part won't be read. |
| * |
| * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
| * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
| * is lower triangular with a unit diagonal and D is a diagonal matrix. |
| * |
| * The decomposition uses pivoting to ensure stability, so that D will have |
| * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
| * on D also stabilizes the computation. |
| * |
| * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
| * decomposition to determine whether a system of equations has a solution. |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT |
| */ |
| template<typename MatrixType_, int UpLo_> class LDLT |
| : public SolverBase<LDLT<MatrixType_, UpLo_> > |
| { |
| public: |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<LDLT> Base; |
| friend class SolverBase<LDLT>; |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(LDLT) |
| enum { |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| UpLo = UpLo_ |
| }; |
| typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; |
| |
| typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| |
| typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
| |
| /** \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via LDLT::compute(const MatrixType&). |
| */ |
| LDLT() |
| : m_matrix(), |
| m_transpositions(), |
| m_sign(internal::ZeroSign), |
| m_isInitialized(false) |
| {} |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa LDLT() |
| */ |
| explicit LDLT(Index size) |
| : m_matrix(size, size), |
| m_transpositions(size), |
| m_temporary(size), |
| m_sign(internal::ZeroSign), |
| m_isInitialized(false) |
| {} |
| |
| /** \brief Constructor with decomposition |
| * |
| * This calculates the decomposition for the input \a matrix. |
| * |
| * \sa LDLT(Index size) |
| */ |
| template<typename InputType> |
| explicit LDLT(const EigenBase<InputType>& matrix) |
| : m_matrix(matrix.rows(), matrix.cols()), |
| m_transpositions(matrix.rows()), |
| m_temporary(matrix.rows()), |
| m_sign(internal::ZeroSign), |
| m_isInitialized(false) |
| { |
| compute(matrix.derived()); |
| } |
| |
| /** \brief Constructs a LDLT factorization from a given matrix |
| * |
| * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
| * |
| * \sa LDLT(const EigenBase&) |
| */ |
| template<typename InputType> |
| explicit LDLT(EigenBase<InputType>& matrix) |
| : m_matrix(matrix.derived()), |
| m_transpositions(matrix.rows()), |
| m_temporary(matrix.rows()), |
| m_sign(internal::ZeroSign), |
| m_isInitialized(false) |
| { |
| compute(matrix.derived()); |
| } |
| |
| /** Clear any existing decomposition |
| * \sa rankUpdate(w,sigma) |
| */ |
| void setZero() |
| { |
| m_isInitialized = false; |
| } |
| |
| /** \returns a view of the upper triangular matrix U */ |
| inline typename Traits::MatrixU matrixU() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getU(m_matrix); |
| } |
| |
| /** \returns a view of the lower triangular matrix L */ |
| inline typename Traits::MatrixL matrixL() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return Traits::getL(m_matrix); |
| } |
| |
| /** \returns the permutation matrix P as a transposition sequence. |
| */ |
| inline const TranspositionType& transpositionsP() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_transpositions; |
| } |
| |
| /** \returns the coefficients of the diagonal matrix D */ |
| inline Diagonal<const MatrixType> vectorD() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix.diagonal(); |
| } |
| |
| /** \returns true if the matrix is positive (semidefinite) */ |
| inline bool isPositive() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; |
| } |
| |
| /** \returns true if the matrix is negative (semidefinite) */ |
| inline bool isNegative(void) const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
| * |
| * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . |
| * |
| * \note_about_checking_solutions |
| * |
| * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ |
| * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, |
| * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then |
| * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the |
| * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function |
| * computes the least-square solution of \f$ A x = b \f$ if \f$ A \f$ is singular. |
| * |
| * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() |
| */ |
| template<typename Rhs> |
| inline const Solve<LDLT, Rhs> |
| solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| template<typename Derived> |
| bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| |
| template<typename InputType> |
| LDLT& compute(const EigenBase<InputType>& matrix); |
| |
| /** \returns an estimate of the reciprocal condition number of the matrix of |
| * which \c *this is the LDLT decomposition. |
| */ |
| RealScalar rcond() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return internal::rcond_estimate_helper(m_l1_norm, *this); |
| } |
| |
| template <typename Derived> |
| LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); |
| |
| /** \returns the internal LDLT decomposition matrix |
| * |
| * TODO: document the storage layout |
| */ |
| inline const MatrixType& matrixLDLT() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_matrix; |
| } |
| |
| MatrixType reconstructedMatrix() const; |
| |
| /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. |
| * |
| * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
| * \code x = decomposition.adjoint().solve(b) \endcode |
| */ |
| const LDLT& adjoint() const { return *this; } |
| |
| EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); } |
| EIGEN_DEVICE_FUNC inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); } |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, |
| * \c NumericalIssue if the factorization failed because of a zero pivot. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| return m_info; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename RhsType, typename DstType> |
| void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
| #endif |
| |
| protected: |
| |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| /** \internal |
| * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
| * The strict upper part is used during the decomposition, the strict lower |
| * part correspond to the coefficients of L (its diagonal is equal to 1 and |
| * is not stored), and the diagonal entries correspond to D. |
| */ |
| MatrixType m_matrix; |
| RealScalar m_l1_norm; |
| TranspositionType m_transpositions; |
| TmpMatrixType m_temporary; |
| internal::SignMatrix m_sign; |
| bool m_isInitialized; |
| ComputationInfo m_info; |
| }; |
| |
| namespace internal { |
| |
| template<int UpLo> struct ldlt_inplace; |
| |
| template<> struct ldlt_inplace<Lower> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
| { |
| using std::abs; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef typename TranspositionType::StorageIndex IndexType; |
| eigen_assert(mat.rows()==mat.cols()); |
| const Index size = mat.rows(); |
| bool found_zero_pivot = false; |
| bool ret = true; |
| |
| if (size <= 1) |
| { |
| transpositions.setIdentity(); |
| if(size==0) sign = ZeroSign; |
| else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; |
| else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
| else sign = ZeroSign; |
| return true; |
| } |
| |
| for (Index k = 0; k < size; ++k) |
| { |
| // Find largest diagonal element |
| Index index_of_biggest_in_corner; |
| mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
| index_of_biggest_in_corner += k; |
| |
| transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); |
| if(k != index_of_biggest_in_corner) |
| { |
| // apply the transposition while taking care to consider only |
| // the lower triangular part |
| Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
| mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
| mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
| std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
| for(Index i=k+1;i<index_of_biggest_in_corner;++i) |
| { |
| Scalar tmp = mat.coeffRef(i,k); |
| mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
| mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); |
| } |
| if(NumTraits<Scalar>::IsComplex) |
| mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); |
| } |
| |
| // partition the matrix: |
| // A00 | - | - |
| // lu = A10 | A11 | - |
| // A20 | A21 | A22 |
| Index rs = size - k - 1; |
| Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| |
| if(k>0) |
| { |
| temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); |
| mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
| if(rs>0) |
| A21.noalias() -= A20 * temp.head(k); |
| } |
| |
| // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot |
| // was smaller than the cutoff value. However, since LDLT is not rank-revealing |
| // we should only make sure that we do not introduce INF or NaN values. |
| // Remark that LAPACK also uses 0 as the cutoff value. |
| RealScalar realAkk = numext::real(mat.coeffRef(k,k)); |
| bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); |
| |
| if(k==0 && !pivot_is_valid) |
| { |
| // The entire diagonal is zero, there is nothing more to do |
| // except filling the transpositions, and checking whether the matrix is zero. |
| sign = ZeroSign; |
| for(Index j = 0; j<size; ++j) |
| { |
| transpositions.coeffRef(j) = IndexType(j); |
| ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); |
| } |
| return ret; |
| } |
| |
| if((rs>0) && pivot_is_valid) |
| A21 /= realAkk; |
| else if(rs>0) |
| ret = ret && (A21.array()==Scalar(0)).all(); |
| |
| if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed |
| else if(!pivot_is_valid) found_zero_pivot = true; |
| |
| if (sign == PositiveSemiDef) { |
| if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; |
| } else if (sign == NegativeSemiDef) { |
| if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; |
| } else if (sign == ZeroSign) { |
| if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; |
| else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
| } |
| } |
| |
| return ret; |
| } |
| |
| // Reference for the algorithm: Davis and Hager, "Multiple Rank |
| // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) |
| // Trivial rearrangements of their computations (Timothy E. Holy) |
| // allow their algorithm to work for rank-1 updates even if the |
| // original matrix is not of full rank. |
| // Here only rank-1 updates are implemented, to reduce the |
| // requirement for intermediate storage and improve accuracy |
| template<typename MatrixType, typename WDerived> |
| static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) |
| { |
| using numext::isfinite; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| const Index size = mat.rows(); |
| eigen_assert(mat.cols() == size && w.size()==size); |
| |
| RealScalar alpha = 1; |
| |
| // Apply the update |
| for (Index j = 0; j < size; j++) |
| { |
| // Check for termination due to an original decomposition of low-rank |
| if (!(isfinite)(alpha)) |
| break; |
| |
| // Update the diagonal terms |
| RealScalar dj = numext::real(mat.coeff(j,j)); |
| Scalar wj = w.coeff(j); |
| RealScalar swj2 = sigma*numext::abs2(wj); |
| RealScalar gamma = dj*alpha + swj2; |
| |
| mat.coeffRef(j,j) += swj2/alpha; |
| alpha += swj2/dj; |
| |
| |
| // Update the terms of L |
| Index rs = size-j-1; |
| w.tail(rs) -= wj * mat.col(j).tail(rs); |
| if(!numext::is_exactly_zero(gamma)) |
| mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); |
| } |
| return true; |
| } |
| |
| template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) |
| { |
| // Apply the permutation to the input w |
| tmp = transpositions * w; |
| |
| return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
| } |
| }; |
| |
| template<> struct ldlt_inplace<Upper> |
| { |
| template<typename MatrixType, typename TranspositionType, typename Workspace> |
| static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
| { |
| Transpose<MatrixType> matt(mat); |
| return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
| } |
| |
| template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) |
| { |
| Transpose<MatrixType> matt(mat); |
| return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
| } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
| { |
| typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
| }; |
| |
| template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
| { |
| typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
| typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
| static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
| static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
| }; |
| |
| } // end namespace internal |
| |
| /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
| */ |
| template<typename MatrixType, int UpLo_> |
| template<typename InputType> |
| LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::compute(const EigenBase<InputType>& a) |
| { |
| eigen_assert(a.rows()==a.cols()); |
| const Index size = a.rows(); |
| |
| m_matrix = a.derived(); |
| |
| // Compute matrix L1 norm = max abs column sum. |
| m_l1_norm = RealScalar(0); |
| // TODO move this code to SelfAdjointView |
| for (Index col = 0; col < size; ++col) { |
| RealScalar abs_col_sum; |
| if (UpLo_ == Lower) |
| abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
| else |
| abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
| if (abs_col_sum > m_l1_norm) |
| m_l1_norm = abs_col_sum; |
| } |
| |
| m_transpositions.resize(size); |
| m_isInitialized = false; |
| m_temporary.resize(size); |
| m_sign = internal::ZeroSign; |
| |
| m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; |
| |
| m_isInitialized = true; |
| return *this; |
| } |
| |
| /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. |
| * \param w a vector to be incorporated into the decomposition. |
| * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
| * \sa setZero() |
| */ |
| template<typename MatrixType, int UpLo_> |
| template<typename Derived> |
| LDLT<MatrixType,UpLo_>& LDLT<MatrixType,UpLo_>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,UpLo_>::RealScalar& sigma) |
| { |
| typedef typename TranspositionType::StorageIndex IndexType; |
| const Index size = w.rows(); |
| if (m_isInitialized) |
| { |
| eigen_assert(m_matrix.rows()==size); |
| } |
| else |
| { |
| m_matrix.resize(size,size); |
| m_matrix.setZero(); |
| m_transpositions.resize(size); |
| for (Index i = 0; i < size; i++) |
| m_transpositions.coeffRef(i) = IndexType(i); |
| m_temporary.resize(size); |
| m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; |
| m_isInitialized = true; |
| } |
| |
| internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
| |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename MatrixType_, int UpLo_> |
| template<typename RhsType, typename DstType> |
| void LDLT<MatrixType_,UpLo_>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| { |
| _solve_impl_transposed<true>(rhs, dst); |
| } |
| |
| template<typename MatrixType_,int UpLo_> |
| template<bool Conjugate, typename RhsType, typename DstType> |
| void LDLT<MatrixType_,UpLo_>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
| { |
| // dst = P b |
| dst = m_transpositions * rhs; |
| |
| // dst = L^-1 (P b) |
| // dst = L^-*T (P b) |
| matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst); |
| |
| // dst = D^-* (L^-1 P b) |
| // dst = D^-1 (L^-*T P b) |
| // more precisely, use pseudo-inverse of D (see bug 241) |
| using std::abs; |
| const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); |
| // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) |
| // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: |
| // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); |
| // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest |
| // diagonal element is not well justified and leads to numerical issues in some cases. |
| // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. |
| // Using numeric_limits::min() gives us more robustness to denormals. |
| RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); |
| for (Index i = 0; i < vecD.size(); ++i) |
| { |
| if(abs(vecD(i)) > tolerance) |
| dst.row(i) /= vecD(i); |
| else |
| dst.row(i).setZero(); |
| } |
| |
| // dst = L^-* (D^-* L^-1 P b) |
| // dst = L^-T (D^-1 L^-*T P b) |
| matrixL().transpose().template conjugateIf<Conjugate>().solveInPlace(dst); |
| |
| // dst = P^T (L^-* D^-* L^-1 P b) = A^-1 b |
| // dst = P^-T (L^-T D^-1 L^-*T P b) = A^-1 b |
| dst = m_transpositions.transpose() * dst; |
| } |
| #endif |
| |
| /** \internal use x = ldlt_object.solve(x); |
| * |
| * This is the \em in-place version of solve(). |
| * |
| * \param bAndX represents both the right-hand side matrix b and result x. |
| * |
| * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| * |
| * This version avoids a copy when the right hand side matrix b is not |
| * needed anymore. |
| * |
| * \sa LDLT::solve(), MatrixBase::ldlt() |
| */ |
| template<typename MatrixType,int UpLo_> |
| template<typename Derived> |
| bool LDLT<MatrixType,UpLo_>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| eigen_assert(m_matrix.rows() == bAndX.rows()); |
| |
| bAndX = this->solve(bAndX); |
| |
| return true; |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: P^T L D L^* P. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType, int UpLo_> |
| MatrixType LDLT<MatrixType,UpLo_>::reconstructedMatrix() const |
| { |
| eigen_assert(m_isInitialized && "LDLT is not initialized."); |
| const Index size = m_matrix.rows(); |
| MatrixType res(size,size); |
| |
| // P |
| res.setIdentity(); |
| res = transpositionsP() * res; |
| // L^* P |
| res = matrixU() * res; |
| // D(L^*P) |
| res = vectorD().real().asDiagonal() * res; |
| // L(DL^*P) |
| res = matrixL() * res; |
| // P^T (LDL^*P) |
| res = transpositionsP().transpose() * res; |
| |
| return res; |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| * \sa MatrixBase::ldlt() |
| */ |
| template<typename MatrixType, unsigned int UpLo> |
| inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| SelfAdjointView<MatrixType, UpLo>::ldlt() const |
| { |
| return LDLT<PlainObject,UpLo>(m_matrix); |
| } |
| |
| /** \cholesky_module |
| * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| * \sa SelfAdjointView::ldlt() |
| */ |
| template<typename Derived> |
| inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::ldlt() const |
| { |
| return LDLT<PlainObject>(derived()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_LDLT_H |