| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Claire Maurice |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_COMPLEX_SCHUR_H |
| #define EIGEN_COMPLEX_SCHUR_H |
| |
| #include "./HessenbergDecomposition.h" |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename MatrixType, bool IsComplex> struct complex_schur_reduce_to_hessenberg; |
| } |
| |
| /** \eigenvalues_module \ingroup Eigenvalues_Module |
| * |
| * |
| * \class ComplexSchur |
| * |
| * \brief Performs a complex Schur decomposition of a real or complex square matrix |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are |
| * computing the Schur decomposition; this is expected to be an |
| * instantiation of the Matrix class template. |
| * |
| * Given a real or complex square matrix A, this class computes the |
| * Schur decomposition: \f$ A = U T U^*\f$ where U is a unitary |
| * complex matrix, and T is a complex upper triangular matrix. The |
| * diagonal of the matrix T corresponds to the eigenvalues of the |
| * matrix A. |
| * |
| * Call the function compute() to compute the Schur decomposition of |
| * a given matrix. Alternatively, you can use the |
| * ComplexSchur(const MatrixType&, bool) constructor which computes |
| * the Schur decomposition at construction time. Once the |
| * decomposition is computed, you can use the matrixU() and matrixT() |
| * functions to retrieve the matrices U and V in the decomposition. |
| * |
| * \note This code is inspired from Jampack |
| * |
| * \sa class RealSchur, class EigenSolver, class ComplexEigenSolver |
| */ |
| template<typename MatrixType_> class ComplexSchur |
| { |
| public: |
| typedef MatrixType_ MatrixType; |
| enum { |
| RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| Options = MatrixType::Options, |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| |
| /** \brief Scalar type for matrices of type \p MatrixType_. */ |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| |
| /** \brief Complex scalar type for \p MatrixType_. |
| * |
| * This is \c std::complex<Scalar> if #Scalar is real (e.g., |
| * \c float or \c double) and just \c Scalar if #Scalar is |
| * complex. |
| */ |
| typedef std::complex<RealScalar> ComplexScalar; |
| |
| /** \brief Type for the matrices in the Schur decomposition. |
| * |
| * This is a square matrix with entries of type #ComplexScalar. |
| * The size is the same as the size of \p MatrixType_. |
| */ |
| typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> ComplexMatrixType; |
| |
| /** \brief Default constructor. |
| * |
| * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed. |
| * |
| * The default constructor is useful in cases in which the user |
| * intends to perform decompositions via compute(). The \p size |
| * parameter is only used as a hint. It is not an error to give a |
| * wrong \p size, but it may impair performance. |
| * |
| * \sa compute() for an example. |
| */ |
| explicit ComplexSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime) |
| : m_matT(size,size), |
| m_matU(size,size), |
| m_hess(size), |
| m_isInitialized(false), |
| m_matUisUptodate(false), |
| m_maxIters(-1) |
| {} |
| |
| /** \brief Constructor; computes Schur decomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| * |
| * This constructor calls compute() to compute the Schur decomposition. |
| * |
| * \sa matrixT() and matrixU() for examples. |
| */ |
| template<typename InputType> |
| explicit ComplexSchur(const EigenBase<InputType>& matrix, bool computeU = true) |
| : m_matT(matrix.rows(),matrix.cols()), |
| m_matU(matrix.rows(),matrix.cols()), |
| m_hess(matrix.rows()), |
| m_isInitialized(false), |
| m_matUisUptodate(false), |
| m_maxIters(-1) |
| { |
| compute(matrix.derived(), computeU); |
| } |
| |
| /** \brief Returns the unitary matrix in the Schur decomposition. |
| * |
| * \returns A const reference to the matrix U. |
| * |
| * It is assumed that either the constructor |
| * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
| * member function compute(const MatrixType& matrix, bool computeU) |
| * has been called before to compute the Schur decomposition of a |
| * matrix, and that \p computeU was set to true (the default |
| * value). |
| * |
| * Example: \include ComplexSchur_matrixU.cpp |
| * Output: \verbinclude ComplexSchur_matrixU.out |
| */ |
| const ComplexMatrixType& matrixU() const |
| { |
| eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the ComplexSchur decomposition."); |
| return m_matU; |
| } |
| |
| /** \brief Returns the triangular matrix in the Schur decomposition. |
| * |
| * \returns A const reference to the matrix T. |
| * |
| * It is assumed that either the constructor |
| * ComplexSchur(const MatrixType& matrix, bool computeU) or the |
| * member function compute(const MatrixType& matrix, bool computeU) |
| * has been called before to compute the Schur decomposition of a |
| * matrix. |
| * |
| * Note that this function returns a plain square matrix. If you want to reference |
| * only the upper triangular part, use: |
| * \code schur.matrixT().triangularView<Upper>() \endcode |
| * |
| * Example: \include ComplexSchur_matrixT.cpp |
| * Output: \verbinclude ComplexSchur_matrixT.out |
| */ |
| const ComplexMatrixType& matrixT() const |
| { |
| eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| return m_matT; |
| } |
| |
| /** \brief Computes Schur decomposition of given matrix. |
| * |
| * \param[in] matrix Square matrix whose Schur decomposition is to be computed. |
| * \param[in] computeU If true, both T and U are computed; if false, only T is computed. |
| |
| * \returns Reference to \c *this |
| * |
| * The Schur decomposition is computed by first reducing the |
| * matrix to Hessenberg form using the class |
| * HessenbergDecomposition. The Hessenberg matrix is then reduced |
| * to triangular form by performing QR iterations with a single |
| * shift. The cost of computing the Schur decomposition depends |
| * on the number of iterations; as a rough guide, it may be taken |
| * on the number of iterations; as a rough guide, it may be taken |
| * to be \f$25n^3\f$ complex flops, or \f$10n^3\f$ complex flops |
| * if \a computeU is false. |
| * |
| * Example: \include ComplexSchur_compute.cpp |
| * Output: \verbinclude ComplexSchur_compute.out |
| * |
| * \sa compute(const MatrixType&, bool, Index) |
| */ |
| template<typename InputType> |
| ComplexSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true); |
| |
| /** \brief Compute Schur decomposition from a given Hessenberg matrix |
| * \param[in] matrixH Matrix in Hessenberg form H |
| * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T |
| * \param computeU Computes the matriX U of the Schur vectors |
| * \return Reference to \c *this |
| * |
| * This routine assumes that the matrix is already reduced in Hessenberg form matrixH |
| * using either the class HessenbergDecomposition or another mean. |
| * It computes the upper quasi-triangular matrix T of the Schur decomposition of H |
| * When computeU is true, this routine computes the matrix U such that |
| * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix |
| * |
| * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix |
| * is not available, the user should give an identity matrix (Q.setIdentity()) |
| * |
| * \sa compute(const MatrixType&, bool) |
| */ |
| template<typename HessMatrixType, typename OrthMatrixType> |
| ComplexSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU=true); |
| |
| /** \brief Reports whether previous computation was successful. |
| * |
| * \returns \c Success if computation was successful, \c NoConvergence otherwise. |
| */ |
| ComputationInfo info() const |
| { |
| eigen_assert(m_isInitialized && "ComplexSchur is not initialized."); |
| return m_info; |
| } |
| |
| /** \brief Sets the maximum number of iterations allowed. |
| * |
| * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size |
| * of the matrix. |
| */ |
| ComplexSchur& setMaxIterations(Index maxIters) |
| { |
| m_maxIters = maxIters; |
| return *this; |
| } |
| |
| /** \brief Returns the maximum number of iterations. */ |
| Index getMaxIterations() |
| { |
| return m_maxIters; |
| } |
| |
| /** \brief Maximum number of iterations per row. |
| * |
| * If not otherwise specified, the maximum number of iterations is this number times the size of the |
| * matrix. It is currently set to 30. |
| */ |
| static const int m_maxIterationsPerRow = 30; |
| |
| protected: |
| ComplexMatrixType m_matT, m_matU; |
| HessenbergDecomposition<MatrixType> m_hess; |
| ComputationInfo m_info; |
| bool m_isInitialized; |
| bool m_matUisUptodate; |
| Index m_maxIters; |
| |
| private: |
| bool subdiagonalEntryIsNeglegible(Index i); |
| ComplexScalar computeShift(Index iu, Index iter); |
| void reduceToTriangularForm(bool computeU); |
| friend struct internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>; |
| }; |
| |
| /** If m_matT(i+1,i) is negligible in floating point arithmetic |
| * compared to m_matT(i,i) and m_matT(j,j), then set it to zero and |
| * return true, else return false. */ |
| template<typename MatrixType> |
| inline bool ComplexSchur<MatrixType>::subdiagonalEntryIsNeglegible(Index i) |
| { |
| RealScalar d = numext::norm1(m_matT.coeff(i,i)) + numext::norm1(m_matT.coeff(i+1,i+1)); |
| RealScalar sd = numext::norm1(m_matT.coeff(i+1,i)); |
| if (internal::isMuchSmallerThan(sd, d, NumTraits<RealScalar>::epsilon())) |
| { |
| m_matT.coeffRef(i+1,i) = ComplexScalar(0); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /** Compute the shift in the current QR iteration. */ |
| template<typename MatrixType> |
| typename ComplexSchur<MatrixType>::ComplexScalar ComplexSchur<MatrixType>::computeShift(Index iu, Index iter) |
| { |
| using std::abs; |
| if (iter == 10 || iter == 20) |
| { |
| // exceptional shift, taken from http://www.netlib.org/eispack/comqr.f |
| return abs(numext::real(m_matT.coeff(iu,iu-1))) + abs(numext::real(m_matT.coeff(iu-1,iu-2))); |
| } |
| |
| // compute the shift as one of the eigenvalues of t, the 2x2 |
| // diagonal block on the bottom of the active submatrix |
| Matrix<ComplexScalar,2,2> t = m_matT.template block<2,2>(iu-1,iu-1); |
| RealScalar normt = t.cwiseAbs().sum(); |
| t /= normt; // the normalization by sf is to avoid under/overflow |
| |
| ComplexScalar b = t.coeff(0,1) * t.coeff(1,0); |
| ComplexScalar c = t.coeff(0,0) - t.coeff(1,1); |
| ComplexScalar disc = sqrt(c*c + RealScalar(4)*b); |
| ComplexScalar det = t.coeff(0,0) * t.coeff(1,1) - b; |
| ComplexScalar trace = t.coeff(0,0) + t.coeff(1,1); |
| ComplexScalar eival1 = (trace + disc) / RealScalar(2); |
| ComplexScalar eival2 = (trace - disc) / RealScalar(2); |
| RealScalar eival1_norm = numext::norm1(eival1); |
| RealScalar eival2_norm = numext::norm1(eival2); |
| // A division by zero can only occur if eival1==eival2==0. |
| // In this case, det==0, and all we have to do is checking that eival2_norm!=0 |
| if(eival1_norm > eival2_norm) |
| eival2 = det / eival1; |
| else if(!numext::is_exactly_zero(eival2_norm)) |
| eival1 = det / eival2; |
| |
| // choose the eigenvalue closest to the bottom entry of the diagonal |
| if(numext::norm1(eival1-t.coeff(1,1)) < numext::norm1(eival2-t.coeff(1,1))) |
| return normt * eival1; |
| else |
| return normt * eival2; |
| } |
| |
| |
| template<typename MatrixType> |
| template<typename InputType> |
| ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU) |
| { |
| m_matUisUptodate = false; |
| eigen_assert(matrix.cols() == matrix.rows()); |
| |
| if(matrix.cols() == 1) |
| { |
| m_matT = matrix.derived().template cast<ComplexScalar>(); |
| if(computeU) m_matU = ComplexMatrixType::Identity(1,1); |
| m_info = Success; |
| m_isInitialized = true; |
| m_matUisUptodate = computeU; |
| return *this; |
| } |
| |
| internal::complex_schur_reduce_to_hessenberg<MatrixType, NumTraits<Scalar>::IsComplex>::run(*this, matrix.derived(), computeU); |
| computeFromHessenberg(m_matT, m_matU, computeU); |
| return *this; |
| } |
| |
| template<typename MatrixType> |
| template<typename HessMatrixType, typename OrthMatrixType> |
| ComplexSchur<MatrixType>& ComplexSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU) |
| { |
| m_matT = matrixH; |
| if(computeU) |
| m_matU = matrixQ; |
| reduceToTriangularForm(computeU); |
| return *this; |
| } |
| namespace internal { |
| |
| /* Reduce given matrix to Hessenberg form */ |
| template<typename MatrixType, bool IsComplex> |
| struct complex_schur_reduce_to_hessenberg |
| { |
| // this is the implementation for the case IsComplex = true |
| static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
| { |
| _this.m_hess.compute(matrix); |
| _this.m_matT = _this.m_hess.matrixH(); |
| if(computeU) _this.m_matU = _this.m_hess.matrixQ(); |
| } |
| }; |
| |
| template<typename MatrixType> |
| struct complex_schur_reduce_to_hessenberg<MatrixType, false> |
| { |
| static void run(ComplexSchur<MatrixType>& _this, const MatrixType& matrix, bool computeU) |
| { |
| typedef typename ComplexSchur<MatrixType>::ComplexScalar ComplexScalar; |
| |
| // Note: m_hess is over RealScalar; m_matT and m_matU is over ComplexScalar |
| _this.m_hess.compute(matrix); |
| _this.m_matT = _this.m_hess.matrixH().template cast<ComplexScalar>(); |
| if(computeU) |
| { |
| // This may cause an allocation which seems to be avoidable |
| MatrixType Q = _this.m_hess.matrixQ(); |
| _this.m_matU = Q.template cast<ComplexScalar>(); |
| } |
| } |
| }; |
| |
| } // end namespace internal |
| |
| // Reduce the Hessenberg matrix m_matT to triangular form by QR iteration. |
| template<typename MatrixType> |
| void ComplexSchur<MatrixType>::reduceToTriangularForm(bool computeU) |
| { |
| Index maxIters = m_maxIters; |
| if (maxIters == -1) |
| maxIters = m_maxIterationsPerRow * m_matT.rows(); |
| |
| // The matrix m_matT is divided in three parts. |
| // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero. |
| // Rows il,...,iu is the part we are working on (the active submatrix). |
| // Rows iu+1,...,end are already brought in triangular form. |
| Index iu = m_matT.cols() - 1; |
| Index il; |
| Index iter = 0; // number of iterations we are working on the (iu,iu) element |
| Index totalIter = 0; // number of iterations for whole matrix |
| |
| while(true) |
| { |
| // find iu, the bottom row of the active submatrix |
| while(iu > 0) |
| { |
| if(!subdiagonalEntryIsNeglegible(iu-1)) break; |
| iter = 0; |
| --iu; |
| } |
| |
| // if iu is zero then we are done; the whole matrix is triangularized |
| if(iu==0) break; |
| |
| // if we spent too many iterations, we give up |
| iter++; |
| totalIter++; |
| if(totalIter > maxIters) break; |
| |
| // find il, the top row of the active submatrix |
| il = iu-1; |
| while(il > 0 && !subdiagonalEntryIsNeglegible(il-1)) |
| { |
| --il; |
| } |
| |
| /* perform the QR step using Givens rotations. The first rotation |
| creates a bulge; the (il+2,il) element becomes nonzero. This |
| bulge is chased down to the bottom of the active submatrix. */ |
| |
| ComplexScalar shift = computeShift(iu, iter); |
| JacobiRotation<ComplexScalar> rot; |
| rot.makeGivens(m_matT.coeff(il,il) - shift, m_matT.coeff(il+1,il)); |
| m_matT.rightCols(m_matT.cols()-il).applyOnTheLeft(il, il+1, rot.adjoint()); |
| m_matT.topRows((std::min)(il+2,iu)+1).applyOnTheRight(il, il+1, rot); |
| if(computeU) m_matU.applyOnTheRight(il, il+1, rot); |
| |
| for(Index i=il+1 ; i<iu ; i++) |
| { |
| rot.makeGivens(m_matT.coeffRef(i,i-1), m_matT.coeffRef(i+1,i-1), &m_matT.coeffRef(i,i-1)); |
| m_matT.coeffRef(i+1,i-1) = ComplexScalar(0); |
| m_matT.rightCols(m_matT.cols()-i).applyOnTheLeft(i, i+1, rot.adjoint()); |
| m_matT.topRows((std::min)(i+2,iu)+1).applyOnTheRight(i, i+1, rot); |
| if(computeU) m_matU.applyOnTheRight(i, i+1, rot); |
| } |
| } |
| |
| if(totalIter <= maxIters) |
| m_info = Success; |
| else |
| m_info = NoConvergence; |
| |
| m_isInitialized = true; |
| m_matUisUptodate = computeU; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_COMPLEX_SCHUR_H |