| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PARTIALLU_H |
| #define EIGEN_PARTIALLU_H |
| |
| #include "./InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| template<typename MatrixType_> struct traits<PartialPivLU<MatrixType_> > |
| : traits<MatrixType_> |
| { |
| typedef MatrixXpr XprKind; |
| typedef SolverStorage StorageKind; |
| typedef int StorageIndex; |
| typedef traits<MatrixType_> BaseTraits; |
| enum { |
| Flags = BaseTraits::Flags & RowMajorBit, |
| CoeffReadCost = Dynamic |
| }; |
| }; |
| |
| template<typename T,typename Derived> |
| struct enable_if_ref; |
| // { |
| // typedef Derived type; |
| // }; |
| |
| template<typename T,typename Derived> |
| struct enable_if_ref<Ref<T>,Derived> { |
| typedef Derived type; |
| }; |
| |
| } // end namespace internal |
| |
| /** \ingroup LU_Module |
| * |
| * \class PartialPivLU |
| * |
| * \brief LU decomposition of a matrix with partial pivoting, and related features |
| * |
| * \tparam MatrixType_ the type of the matrix of which we are computing the LU decomposition |
| * |
| * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
| * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
| * is a permutation matrix. |
| * |
| * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
| * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
| * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
| * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
| * |
| * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
| * by class FullPivLU. |
| * |
| * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
| * such as rank computation. If you need these features, use class FullPivLU. |
| * |
| * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
| * in the general case. |
| * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
| * |
| * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
| * |
| * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| * |
| * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
| */ |
| template<typename MatrixType_> class PartialPivLU |
| : public SolverBase<PartialPivLU<MatrixType_> > |
| { |
| public: |
| |
| typedef MatrixType_ MatrixType; |
| typedef SolverBase<PartialPivLU> Base; |
| friend class SolverBase<PartialPivLU>; |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) |
| enum { |
| MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| }; |
| typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
| typedef typename MatrixType::PlainObject PlainObject; |
| |
| /** |
| * \brief Default Constructor. |
| * |
| * The default constructor is useful in cases in which the user intends to |
| * perform decompositions via PartialPivLU::compute(const MatrixType&). |
| */ |
| PartialPivLU(); |
| |
| /** \brief Default Constructor with memory preallocation |
| * |
| * Like the default constructor but with preallocation of the internal data |
| * according to the specified problem \a size. |
| * \sa PartialPivLU() |
| */ |
| explicit PartialPivLU(Index size); |
| |
| /** Constructor. |
| * |
| * \param matrix the matrix of which to compute the LU decomposition. |
| * |
| * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| * If you need to deal with non-full rank, use class FullPivLU instead. |
| */ |
| template<typename InputType> |
| explicit PartialPivLU(const EigenBase<InputType>& matrix); |
| |
| /** Constructor for \link InplaceDecomposition inplace decomposition \endlink |
| * |
| * \param matrix the matrix of which to compute the LU decomposition. |
| * |
| * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
| * If you need to deal with non-full rank, use class FullPivLU instead. |
| */ |
| template<typename InputType> |
| explicit PartialPivLU(EigenBase<InputType>& matrix); |
| |
| template<typename InputType> |
| PartialPivLU& compute(const EigenBase<InputType>& matrix) { |
| m_lu = matrix.derived(); |
| compute(); |
| return *this; |
| } |
| |
| /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
| * unit-lower-triangular part is L (at least for square matrices; in the non-square |
| * case, special care is needed, see the documentation of class FullPivLU). |
| * |
| * \sa matrixL(), matrixU() |
| */ |
| inline const MatrixType& matrixLU() const |
| { |
| eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return m_lu; |
| } |
| |
| /** \returns the permutation matrix P. |
| */ |
| inline const PermutationType& permutationP() const |
| { |
| eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return m_p; |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
| * *this is the LU decomposition. |
| * |
| * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
| * the only requirement in order for the equation to make sense is that |
| * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
| * |
| * \returns the solution. |
| * |
| * Example: \include PartialPivLU_solve.cpp |
| * Output: \verbinclude PartialPivLU_solve.out |
| * |
| * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
| * theoretically exists and is unique regardless of b. |
| * |
| * \sa TriangularView::solve(), inverse(), computeInverse() |
| */ |
| template<typename Rhs> |
| inline const Solve<PartialPivLU, Rhs> |
| solve(const MatrixBase<Rhs>& b) const; |
| #endif |
| |
| /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is |
| the LU decomposition. |
| */ |
| inline RealScalar rcond() const |
| { |
| eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return internal::rcond_estimate_helper(m_l1_norm, *this); |
| } |
| |
| /** \returns the inverse of the matrix of which *this is the LU decomposition. |
| * |
| * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
| * invertibility, use class FullPivLU instead. |
| * |
| * \sa MatrixBase::inverse(), LU::inverse() |
| */ |
| inline const Inverse<PartialPivLU> inverse() const |
| { |
| eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return Inverse<PartialPivLU>(*this); |
| } |
| |
| /** \returns the determinant of the matrix of which |
| * *this is the LU decomposition. It has only linear complexity |
| * (that is, O(n) where n is the dimension of the square matrix) |
| * as the LU decomposition has already been computed. |
| * |
| * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
| * optimized paths. |
| * |
| * \warning a determinant can be very big or small, so for matrices |
| * of large enough dimension, there is a risk of overflow/underflow. |
| * |
| * \sa MatrixBase::determinant() |
| */ |
| Scalar determinant() const; |
| |
| MatrixType reconstructedMatrix() const; |
| |
| EIGEN_CONSTEXPR inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); } |
| EIGEN_CONSTEXPR inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename RhsType, typename DstType> |
| EIGEN_DEVICE_FUNC |
| void _solve_impl(const RhsType &rhs, DstType &dst) const { |
| /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
| * So we proceed as follows: |
| * Step 1: compute c = Pb. |
| * Step 2: replace c by the solution x to Lx = c. |
| * Step 3: replace c by the solution x to Ux = c. |
| */ |
| |
| // Step 1 |
| dst = permutationP() * rhs; |
| |
| // Step 2 |
| m_lu.template triangularView<UnitLower>().solveInPlace(dst); |
| |
| // Step 3 |
| m_lu.template triangularView<Upper>().solveInPlace(dst); |
| } |
| |
| template<bool Conjugate, typename RhsType, typename DstType> |
| EIGEN_DEVICE_FUNC |
| void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { |
| /* The decomposition PA = LU can be rewritten as A^T = U^T L^T P. |
| * So we proceed as follows: |
| * Step 1: compute c as the solution to L^T c = b |
| * Step 2: replace c by the solution x to U^T x = c. |
| * Step 3: update c = P^-1 c. |
| */ |
| |
| eigen_assert(rhs.rows() == m_lu.cols()); |
| |
| // Step 1 |
| dst = m_lu.template triangularView<Upper>().transpose() |
| .template conjugateIf<Conjugate>().solve(rhs); |
| // Step 2 |
| m_lu.template triangularView<UnitLower>().transpose() |
| .template conjugateIf<Conjugate>().solveInPlace(dst); |
| // Step 3 |
| dst = permutationP().transpose() * dst; |
| } |
| #endif |
| |
| protected: |
| |
| EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| |
| void compute(); |
| |
| MatrixType m_lu; |
| PermutationType m_p; |
| TranspositionType m_rowsTranspositions; |
| RealScalar m_l1_norm; |
| signed char m_det_p; |
| bool m_isInitialized; |
| }; |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>::PartialPivLU() |
| : m_lu(), |
| m_p(), |
| m_rowsTranspositions(), |
| m_l1_norm(0), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| } |
| |
| template<typename MatrixType> |
| PartialPivLU<MatrixType>::PartialPivLU(Index size) |
| : m_lu(size, size), |
| m_p(size), |
| m_rowsTranspositions(size), |
| m_l1_norm(0), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| } |
| |
| template<typename MatrixType> |
| template<typename InputType> |
| PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix) |
| : m_lu(matrix.rows(),matrix.cols()), |
| m_p(matrix.rows()), |
| m_rowsTranspositions(matrix.rows()), |
| m_l1_norm(0), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| compute(matrix.derived()); |
| } |
| |
| template<typename MatrixType> |
| template<typename InputType> |
| PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix) |
| : m_lu(matrix.derived()), |
| m_p(matrix.rows()), |
| m_rowsTranspositions(matrix.rows()), |
| m_l1_norm(0), |
| m_det_p(0), |
| m_isInitialized(false) |
| { |
| compute(); |
| } |
| |
| namespace internal { |
| |
| /** \internal This is the blocked version of fullpivlu_unblocked() */ |
| template<typename Scalar, int StorageOrder, typename PivIndex, int SizeAtCompileTime=Dynamic> |
| struct partial_lu_impl |
| { |
| static const int UnBlockedBound = 16; |
| static const bool UnBlockedAtCompileTime = SizeAtCompileTime!=Dynamic && SizeAtCompileTime<=UnBlockedBound; |
| static const int ActualSizeAtCompileTime = UnBlockedAtCompileTime ? SizeAtCompileTime : Dynamic; |
| // Remaining rows and columns at compile-time: |
| static const int RRows = SizeAtCompileTime==2 ? 1 : Dynamic; |
| static const int RCols = SizeAtCompileTime==2 ? 1 : Dynamic; |
| typedef Matrix<Scalar, ActualSizeAtCompileTime, ActualSizeAtCompileTime, StorageOrder> MatrixType; |
| typedef Ref<MatrixType> MatrixTypeRef; |
| typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > BlockType; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| /** \internal performs the LU decomposition in-place of the matrix \a lu |
| * using an unblocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| * |
| * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
| */ |
| static Index unblocked_lu(MatrixTypeRef& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
| { |
| typedef scalar_score_coeff_op<Scalar> Scoring; |
| typedef typename Scoring::result_type Score; |
| const Index rows = lu.rows(); |
| const Index cols = lu.cols(); |
| const Index size = (std::min)(rows,cols); |
| // For small compile-time matrices it is worth processing the last row separately: |
| // speedup: +100% for 2x2, +10% for others. |
| const Index endk = UnBlockedAtCompileTime ? size-1 : size; |
| nb_transpositions = 0; |
| Index first_zero_pivot = -1; |
| for(Index k = 0; k < endk; ++k) |
| { |
| int rrows = internal::convert_index<int>(rows-k-1); |
| int rcols = internal::convert_index<int>(cols-k-1); |
| |
| Index row_of_biggest_in_col; |
| Score biggest_in_corner |
| = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); |
| row_of_biggest_in_col += k; |
| |
| row_transpositions[k] = PivIndex(row_of_biggest_in_col); |
| |
| if(!numext::is_exactly_zero(biggest_in_corner)) |
| { |
| if(k != row_of_biggest_in_col) |
| { |
| lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
| ++nb_transpositions; |
| } |
| |
| lu.col(k).tail(fix<RRows>(rrows)) /= lu.coeff(k,k); |
| } |
| else if(first_zero_pivot==-1) |
| { |
| // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
| // and continue the factorization such we still have A = PLU |
| first_zero_pivot = k; |
| } |
| |
| if(k<rows-1) |
| lu.bottomRightCorner(fix<RRows>(rrows),fix<RCols>(rcols)).noalias() -= lu.col(k).tail(fix<RRows>(rrows)) * lu.row(k).tail(fix<RCols>(rcols)); |
| } |
| |
| // special handling of the last entry |
| if(UnBlockedAtCompileTime) |
| { |
| Index k = endk; |
| row_transpositions[k] = PivIndex(k); |
| if (numext::is_exactly_zero(Scoring()(lu(k, k))) && first_zero_pivot == -1) |
| first_zero_pivot = k; |
| } |
| |
| return first_zero_pivot; |
| } |
| |
| /** \internal performs the LU decomposition in-place of the matrix represented |
| * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
| * recursive, blocked algorithm. |
| * |
| * In addition, this function returns the row transpositions in the |
| * vector \a row_transpositions which must have a size equal to the number |
| * of columns of the matrix \a lu, and an integer \a nb_transpositions |
| * which returns the actual number of transpositions. |
| * |
| * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
| * |
| * \note This very low level interface using pointers, etc. is to: |
| * 1 - reduce the number of instantiations to the strict minimum |
| * 2 - avoid infinite recursion of the instantiations with Block<Block<Block<...> > > |
| */ |
| static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
| { |
| MatrixTypeRef lu = MatrixType::Map(lu_data,rows, cols, OuterStride<>(luStride)); |
| |
| const Index size = (std::min)(rows,cols); |
| |
| // if the matrix is too small, no blocking: |
| if(UnBlockedAtCompileTime || size<=UnBlockedBound) |
| { |
| return unblocked_lu(lu, row_transpositions, nb_transpositions); |
| } |
| |
| // automatically adjust the number of subdivisions to the size |
| // of the matrix so that there is enough sub blocks: |
| Index blockSize; |
| { |
| blockSize = size/8; |
| blockSize = (blockSize/16)*16; |
| blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
| } |
| |
| nb_transpositions = 0; |
| Index first_zero_pivot = -1; |
| for(Index k = 0; k < size; k+=blockSize) |
| { |
| Index bs = (std::min)(size-k,blockSize); // actual size of the block |
| Index trows = rows - k - bs; // trailing rows |
| Index tsize = size - k - bs; // trailing size |
| |
| // partition the matrix: |
| // A00 | A01 | A02 |
| // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
| // A20 | A21 | A22 |
| BlockType A_0 = lu.block(0,0,rows,k); |
| BlockType A_2 = lu.block(0,k+bs,rows,tsize); |
| BlockType A11 = lu.block(k,k,bs,bs); |
| BlockType A12 = lu.block(k,k+bs,bs,tsize); |
| BlockType A21 = lu.block(k+bs,k,trows,bs); |
| BlockType A22 = lu.block(k+bs,k+bs,trows,tsize); |
| |
| PivIndex nb_transpositions_in_panel; |
| // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
| // with a very small blocking size: |
| Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
| row_transpositions+k, nb_transpositions_in_panel, 16); |
| if(ret>=0 && first_zero_pivot==-1) |
| first_zero_pivot = k+ret; |
| |
| nb_transpositions += nb_transpositions_in_panel; |
| // update permutations and apply them to A_0 |
| for(Index i=k; i<k+bs; ++i) |
| { |
| Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k)); |
| A_0.row(i).swap(A_0.row(piv)); |
| } |
| |
| if(trows) |
| { |
| // apply permutations to A_2 |
| for(Index i=k;i<k+bs; ++i) |
| A_2.row(i).swap(A_2.row(row_transpositions[i])); |
| |
| // A12 = A11^-1 A12 |
| A11.template triangularView<UnitLower>().solveInPlace(A12); |
| |
| A22.noalias() -= A21 * A12; |
| } |
| } |
| return first_zero_pivot; |
| } |
| }; |
| |
| /** \internal performs the LU decomposition with partial pivoting in-place. |
| */ |
| template<typename MatrixType, typename TranspositionType> |
| void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) |
| { |
| // Special-case of zero matrix. |
| if (lu.rows() == 0 || lu.cols() == 0) { |
| nb_transpositions = 0; |
| return; |
| } |
| eigen_assert(lu.cols() == row_transpositions.size()); |
| eigen_assert(row_transpositions.size() < 2 || (&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
| |
| partial_lu_impl |
| < typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, |
| typename TranspositionType::StorageIndex, |
| internal::min_size_prefer_fixed(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime)> |
| ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
| } |
| |
| } // end namespace internal |
| |
| template<typename MatrixType> |
| void PartialPivLU<MatrixType>::compute() |
| { |
| // the row permutation is stored as int indices, so just to be sure: |
| eigen_assert(m_lu.rows()<NumTraits<int>::highest()); |
| |
| if(m_lu.cols()>0) |
| m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
| else |
| m_l1_norm = RealScalar(0); |
| |
| eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); |
| const Index size = m_lu.rows(); |
| |
| m_rowsTranspositions.resize(size); |
| |
| typename TranspositionType::StorageIndex nb_transpositions; |
| internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
| m_det_p = (nb_transpositions%2) ? -1 : 1; |
| |
| m_p = m_rowsTranspositions; |
| |
| m_isInitialized = true; |
| } |
| |
| template<typename MatrixType> |
| typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
| { |
| eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); |
| return Scalar(m_det_p) * m_lu.diagonal().prod(); |
| } |
| |
| /** \returns the matrix represented by the decomposition, |
| * i.e., it returns the product: P^{-1} L U. |
| * This function is provided for debug purpose. */ |
| template<typename MatrixType> |
| MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
| { |
| eigen_assert(m_isInitialized && "LU is not initialized."); |
| // LU |
| MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
| * m_lu.template triangularView<Upper>(); |
| |
| // P^{-1}(LU) |
| res = m_p.inverse() * res; |
| |
| return res; |
| } |
| |
| /***** Implementation details *****************************************************/ |
| |
| namespace internal { |
| |
| /***** Implementation of inverse() *****************************************************/ |
| template<typename DstXprType, typename MatrixType> |
| struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense> |
| { |
| typedef PartialPivLU<MatrixType> LuType; |
| typedef Inverse<LuType> SrcXprType; |
| static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &) |
| { |
| dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
| } |
| }; |
| } // end namespace internal |
| |
| /******** MatrixBase methods *******/ |
| |
| /** \lu_module |
| * |
| * \return the partial-pivoting LU decomposition of \c *this. |
| * |
| * \sa class PartialPivLU |
| */ |
| template<typename Derived> |
| inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::partialPivLu() const |
| { |
| return PartialPivLU<PlainObject>(eval()); |
| } |
| |
| /** \lu_module |
| * |
| * Synonym of partialPivLu(). |
| * |
| * \return the partial-pivoting LU decomposition of \c *this. |
| * |
| * \sa class PartialPivLU |
| */ |
| template<typename Derived> |
| inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
| MatrixBase<Derived>::lu() const |
| { |
| return PartialPivLU<PlainObject>(eval()); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_PARTIALLU_H |