| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> |
| bool equalsIdentity(const MatrixType& A) |
| { |
| bool offDiagOK = true; |
| for (Index i = 0; i < A.rows(); ++i) { |
| for (Index j = i+1; j < A.cols(); ++j) { |
| offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); |
| } |
| } |
| for (Index i = 0; i < A.rows(); ++i) { |
| for (Index j = 0; j < (std::min)(i, A.cols()); ++j) { |
| offDiagOK = offDiagOK && numext::is_exactly_zero(A(i, j)); |
| } |
| } |
| |
| bool diagOK = (A.diagonal().array() == 1).all(); |
| return offDiagOK && diagOK; |
| } |
| |
| template<typename VectorType> |
| void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename VectorType::RealScalar RealScalar; |
| |
| RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10; |
| Index size = v.size(); |
| |
| if(size<20) |
| return; |
| |
| for (int i=0; i<size; ++i) |
| { |
| if(i<5 || i>size-6) |
| { |
| Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1); |
| if(std::abs(ref)>1) |
| { |
| if(!internal::isApprox(v(i), ref, prec)) |
| std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i)-ref)/ref) << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i << "\n"; |
| VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec)); |
| } |
| } |
| } |
| } |
| |
| template<typename VectorType> |
| void testVectorType(const VectorType& base) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| typedef typename VectorType::RealScalar RealScalar; |
| |
| const Index size = base.size(); |
| |
| Scalar high = internal::random<Scalar>(-500,500); |
| Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500)); |
| if (numext::real(low)>numext::real(high)) std::swap(low,high); |
| |
| // check low==high |
| if(internal::random<float>(0.f,1.f)<0.05f) |
| low = high; |
| // check abs(low) >> abs(high) |
| else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f) |
| low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2)); |
| |
| const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1)); |
| |
| // check whether the result yields what we expect it to do |
| VectorType m(base); |
| m.setLinSpaced(size,low,high); |
| |
| if(!NumTraits<Scalar>::IsInteger) |
| { |
| VectorType n(size); |
| for (int i=0; i<size; ++i) |
| n(i) = low+RealScalar(i)*step; |
| VERIFY_IS_APPROX(m,n); |
| |
| CALL_SUBTEST( check_extremity_accuracy(m, low, high) ); |
| } |
| |
| RealScalar range_length = numext::real(high-low); |
| if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0)) |
| { |
| VectorType n(size); |
| if((!NumTraits<Scalar>::IsInteger) || (range_length>=size)) |
| for (int i=0; i<size; ++i) |
| n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1)); |
| else |
| for (int i=0; i<size; ++i) |
| n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size)); |
| VERIFY_IS_APPROX(m,n); |
| |
| // random access version |
| m = VectorType::LinSpaced(size,low,high); |
| VERIFY_IS_APPROX(m,n); |
| VERIFY( internal::isApprox(m(m.size()-1),high) ); |
| VERIFY( size==1 || internal::isApprox(m(0),low) ); |
| VERIFY_IS_EQUAL(m(m.size()-1) , high); |
| if(!NumTraits<Scalar>::IsInteger) |
| CALL_SUBTEST( check_extremity_accuracy(m, low, high) ); |
| } |
| |
| VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) ); |
| VERIFY( (m.array().real() <= numext::real(high)).all() ); |
| VERIFY( (m.array().real() >= numext::real(low)).all() ); |
| |
| |
| VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) ); |
| if(size>=1) |
| { |
| VERIFY( internal::isApprox(m(0),low) ); |
| VERIFY_IS_EQUAL(m(0) , low); |
| } |
| |
| // check whether everything works with row and col major vectors |
| Matrix<Scalar,Dynamic,1> row_vector(size); |
| Matrix<Scalar,1,Dynamic> col_vector(size); |
| row_vector.setLinSpaced(size,low,high); |
| col_vector.setLinSpaced(size,low,high); |
| // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit |
| // when computing the squared sum in isApprox, thus the 2x factor. |
| VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon())); |
| |
| Matrix<Scalar,Dynamic,1> size_changer(size+50); |
| size_changer.setLinSpaced(size,low,high); |
| VERIFY( size_changer.size() == size ); |
| |
| typedef Matrix<Scalar,1,1> ScalarMatrix; |
| ScalarMatrix scalar; |
| scalar.setLinSpaced(1,low,high); |
| VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) ); |
| VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) ); |
| |
| // regression test for bug 526 (linear vectorized transversal) |
| if (size > 1 && (!NumTraits<Scalar>::IsInteger)) { |
| m.tail(size-1).setLinSpaced(low, high); |
| VERIFY_IS_APPROX(m(size-1), high); |
| } |
| |
| // regression test for bug 1383 (LinSpaced with empty size/range) |
| { |
| Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime; |
| low = internal::random<Scalar>(); |
| m = VectorType::LinSpaced(n0,low,low-RealScalar(1)); |
| VERIFY(m.size()==n0); |
| |
| if(VectorType::SizeAtCompileTime==Dynamic) |
| { |
| VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0)); |
| VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0)); |
| } |
| |
| m.setLinSpaced(n0,0,Scalar(n0-1)); |
| VERIFY(m.size()==n0); |
| m.setLinSpaced(n0,low,low-RealScalar(1)); |
| VERIFY(m.size()==n0); |
| |
| // empty range only: |
| VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low)); |
| m.setLinSpaced(size,low,low); |
| VERIFY_IS_APPROX(m,VectorType::Constant(size,low)); |
| |
| if(NumTraits<Scalar>::IsInteger) |
| { |
| VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() ); |
| |
| if(VectorType::SizeAtCompileTime==Dynamic) |
| { |
| // Check negative multiplicator path: |
| for(Index k=1; k<5; ++k) |
| VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() ); |
| // Check negative divisor path: |
| for(Index k=1; k<5; ++k) |
| VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() ); |
| } |
| } |
| } |
| |
| // test setUnit() |
| if(m.size()>0) |
| { |
| for(Index k=0; k<10; ++k) |
| { |
| Index i = internal::random<Index>(0,m.size()-1); |
| m.setUnit(i); |
| VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) ); |
| } |
| if(VectorType::SizeAtCompileTime==Dynamic) |
| { |
| Index i = internal::random<Index>(0,2*m.size()-1); |
| m.setUnit(2*m.size(),i); |
| VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) ); |
| } |
| } |
| |
| } |
| |
| template<typename MatrixType> |
| void testMatrixType(const MatrixType& m) |
| { |
| using std::abs; |
| const Index rows = m.rows(); |
| const Index cols = m.cols(); |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| |
| Scalar s1; |
| do { |
| s1 = internal::random<Scalar>(); |
| } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger)); |
| |
| MatrixType A; |
| A.setIdentity(rows, cols); |
| VERIFY(equalsIdentity(A)); |
| VERIFY(equalsIdentity(MatrixType::Identity(rows, cols))); |
| |
| |
| A = MatrixType::Constant(rows,cols,s1); |
| Index i = internal::random<Index>(0,rows-1); |
| Index j = internal::random<Index>(0,cols-1); |
| VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 ); |
| VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 ); |
| VERIFY_IS_APPROX( A(i,j), s1 ); |
| } |
| |
| template<int> |
| void bug79() |
| { |
| // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79). |
| VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() ); |
| } |
| |
| template<int> |
| void bug1630() |
| { |
| Array4d x4 = Array4d::LinSpaced(0.0, 1.0); |
| Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3)); |
| VERIFY_IS_APPROX(x4.head(3), x3); |
| } |
| |
| template<int> |
| void nullary_overflow() |
| { |
| // Check possible overflow issue |
| int n = 60000; |
| ArrayXi a1(n), a2(n); |
| a1.setLinSpaced(n, 0, n-1); |
| for(int i=0; i<n; ++i) |
| a2(i) = i; |
| VERIFY_IS_APPROX(a1,a2); |
| } |
| |
| template<int> |
| void nullary_internal_logic() |
| { |
| // check some internal logic |
| VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<double> >::value )); |
| VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value )); |
| VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value )); |
| VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret )); |
| |
| VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value )); |
| VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value )); |
| VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value )); |
| VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret )); |
| |
| VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value )); |
| VERIFY(( internal::has_unary_operator<internal::linspaced_op<float> >::value )); |
| VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value )); |
| VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float> >::ret )); |
| |
| // Regression unit test for a weird MSVC bug. |
| // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details. |
| // See also traits<Ref>::match. |
| { |
| MatrixXf A = MatrixXf::Random(3,3); |
| Ref<const MatrixXf> R = 2.0*A; |
| VERIFY_IS_APPROX(R, A+A); |
| |
| Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A; |
| |
| VectorXi V = VectorXi::Random(3); |
| Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V; |
| VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3)); |
| |
| VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<float> >::value )); |
| VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value )); |
| VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value )); |
| VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret )); |
| |
| VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value )); |
| VERIFY(( internal::has_unary_operator<internal::linspaced_op<int> >::value )); |
| VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value )); |
| VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int> >::ret )); |
| } |
| } |
| |
| EIGEN_DECLARE_TEST(nullary) |
| { |
| CALL_SUBTEST_1( testMatrixType(Matrix2d()) ); |
| CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) ); |
| CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) ); |
| |
| for(int i = 0; i < g_repeat*10; i++) { |
| CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) ); |
| CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) ); |
| CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232 |
| CALL_SUBTEST_6( testVectorType(Vector3d()) ); |
| CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) ); |
| CALL_SUBTEST_8( testVectorType(Vector3f()) ); |
| CALL_SUBTEST_8( testVectorType(Vector4f()) ); |
| CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) ); |
| CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) ); |
| |
| CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) ); |
| CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) ); |
| CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) ); |
| } |
| |
| CALL_SUBTEST_6( bug79<0>() ); |
| CALL_SUBTEST_6( bug1630<0>() ); |
| CALL_SUBTEST_9( nullary_overflow<0>() ); |
| CALL_SUBTEST_10( nullary_internal_logic<0>() ); |
| } |