blob: 05c2a483875c4ef2c95a923c645787efd6b8fc9e [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
template<typename MatrixType> void matrixVisitor(const MatrixType& p)
{
typedef typename MatrixType::Scalar Scalar;
Index rows = p.rows();
Index cols = p.cols();
// construct a random matrix where all coefficients are different
MatrixType m;
m = MatrixType::Random(rows, cols);
for(Index i = 0; i < m.size(); i++)
for(Index i2 = 0; i2 < i; i2++)
while(numext::equal_strict(m(i), m(i2))) // yes, strict equality
m(i) = internal::random<Scalar>();
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
Index minrow=0,mincol=0,maxrow=0,maxcol=0;
for(Index j = 0; j < cols; j++)
for(Index i = 0; i < rows; i++)
{
if(m(i,j) < minc)
{
minc = m(i,j);
minrow = i;
mincol = j;
}
if(m(i,j) > maxc)
{
maxc = m(i,j);
maxrow = i;
maxcol = j;
}
}
Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
Scalar eigen_minc, eigen_maxc;
eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol);
eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol);
VERIFY(minrow == eigen_minrow);
VERIFY(maxrow == eigen_maxrow);
VERIFY(mincol == eigen_mincol);
VERIFY(maxcol == eigen_maxcol);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.minCoeff());
VERIFY_IS_APPROX(maxc, m.maxCoeff());
eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol);
Index maxrow2=0,maxcol2=0;
eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2);
VERIFY(maxrow2 == eigen_maxrow);
VERIFY(maxcol2 == eigen_maxcol);
if (!NumTraits<Scalar>::IsInteger && m.size() > 2) {
// Test NaN propagation by replacing an element with NaN.
bool stop = false;
for (Index j = 0; j < cols && !stop; ++j) {
for (Index i = 0; i < rows && !stop; ++i) {
if (!(j == mincol && i == minrow) &&
!(j == maxcol && i == maxrow)) {
m(i,j) = NumTraits<Scalar>::quiet_NaN();
stop = true;
break;
}
}
}
eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol);
eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol);
VERIFY(minrow == eigen_minrow);
VERIFY(maxrow == eigen_maxrow);
VERIFY(mincol == eigen_mincol);
VERIFY(maxcol == eigen_maxcol);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>());
VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>());
eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol);
eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol);
VERIFY(minrow != eigen_minrow || mincol != eigen_mincol);
VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol);
VERIFY((numext::isnan)(eigen_minc));
VERIFY((numext::isnan)(eigen_maxc));
}
}
template<typename VectorType> void vectorVisitor(const VectorType& w)
{
typedef typename VectorType::Scalar Scalar;
Index size = w.size();
// construct a random vector where all coefficients are different
VectorType v;
v = VectorType::Random(size);
for(Index i = 0; i < size; i++)
for(Index i2 = 0; i2 < i; i2++)
while(v(i) == v(i2)) // yes, ==
v(i) = internal::random<Scalar>();
Scalar minc = v(0), maxc = v(0);
Index minidx=0, maxidx=0;
for(Index i = 0; i < size; i++)
{
if(v(i) < minc)
{
minc = v(i);
minidx = i;
}
if(v(i) > maxc)
{
maxc = v(i);
maxidx = i;
}
}
Index eigen_minidx, eigen_maxidx;
Scalar eigen_minc, eigen_maxc;
eigen_minc = v.minCoeff(&eigen_minidx);
eigen_maxc = v.maxCoeff(&eigen_maxidx);
VERIFY(minidx == eigen_minidx);
VERIFY(maxidx == eigen_maxidx);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, v.minCoeff());
VERIFY_IS_APPROX(maxc, v.maxCoeff());
Index idx0 = internal::random<Index>(0,size-1);
Index idx1 = eigen_minidx;
Index idx2 = eigen_maxidx;
VectorType v1(v), v2(v);
v1(idx0) = v1(idx1);
v2(idx0) = v2(idx2);
v1.minCoeff(&eigen_minidx);
v2.maxCoeff(&eigen_maxidx);
VERIFY(eigen_minidx == (std::min)(idx0,idx1));
VERIFY(eigen_maxidx == (std::min)(idx0,idx2));
if (!NumTraits<Scalar>::IsInteger && size > 2) {
// Test NaN propagation by replacing an element with NaN.
for (Index i = 0; i < size; ++i) {
if (i != minidx && i != maxidx) {
v(i) = NumTraits<Scalar>::quiet_NaN();
break;
}
}
eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx);
eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx);
VERIFY(minidx == eigen_minidx);
VERIFY(maxidx == eigen_maxidx);
VERIFY_IS_APPROX(minc, eigen_minc);
VERIFY_IS_APPROX(maxc, eigen_maxc);
VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>());
VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>());
eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx);
eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx);
VERIFY(minidx != eigen_minidx);
VERIFY(maxidx != eigen_maxidx);
VERIFY((numext::isnan)(eigen_minc));
VERIFY((numext::isnan)(eigen_maxc));
}
}
EIGEN_DECLARE_TEST(visitor)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( matrixVisitor(Matrix2f()) );
CALL_SUBTEST_3( matrixVisitor(Matrix4d()) );
CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) );
CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) );
CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) );
}
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_7( vectorVisitor(Vector4f()) );
CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) );
CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) );
CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) );
CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) );
}
}