| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSEMATRIX_H |
| #define EIGEN_SPARSEMATRIX_H |
| |
| namespace Eigen { |
| |
| /** \ingroup SparseCore_Module |
| * |
| * \class SparseMatrix |
| * |
| * \brief A versatible sparse matrix representation |
| * |
| * This class implements a more versatile variants of the common \em compressed row/column storage format. |
| * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. |
| * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra |
| * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero |
| * can be done with limited memory reallocation and copies. |
| * |
| * A call to the function makeCompressed() turns the matrix into the standard \em compressed format |
| * compatible with many library. |
| * |
| * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". |
| * |
| * \tparam _Scalar the scalar type, i.e. the type of the coefficients |
| * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility |
| * is RowMajor. The default is 0 which means column-major. |
| * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. |
| * |
| * This class can be extended with the help of the plugin mechanism described on the page |
| * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. |
| */ |
| |
| namespace internal { |
| template<typename _Scalar, int _Options, typename _Index> |
| struct traits<SparseMatrix<_Scalar, _Options, _Index> > |
| { |
| typedef _Scalar Scalar; |
| typedef _Index Index; |
| typedef Sparse StorageKind; |
| typedef MatrixXpr XprKind; |
| enum { |
| RowsAtCompileTime = Dynamic, |
| ColsAtCompileTime = Dynamic, |
| MaxRowsAtCompileTime = Dynamic, |
| MaxColsAtCompileTime = Dynamic, |
| Flags = _Options | NestByRefBit | LvalueBit, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = InnerRandomAccessPattern |
| }; |
| }; |
| |
| template<typename _Scalar, int _Options, typename _Index, int DiagIndex> |
| struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> > |
| { |
| typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType; |
| typedef typename nested<MatrixType>::type MatrixTypeNested; |
| typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; |
| |
| typedef _Scalar Scalar; |
| typedef Dense StorageKind; |
| typedef _Index Index; |
| typedef MatrixXpr XprKind; |
| |
| enum { |
| RowsAtCompileTime = Dynamic, |
| ColsAtCompileTime = 1, |
| MaxRowsAtCompileTime = Dynamic, |
| MaxColsAtCompileTime = 1, |
| Flags = 0, |
| CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10 |
| }; |
| }; |
| |
| } // end namespace internal |
| |
| template<typename _Scalar, int _Options, typename _Index> |
| class SparseMatrix |
| : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> > |
| { |
| public: |
| EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=) |
| |
| typedef MappedSparseMatrix<Scalar,Flags> Map; |
| using Base::IsRowMajor; |
| typedef internal::CompressedStorage<Scalar,Index> Storage; |
| enum { |
| Options = _Options |
| }; |
| |
| protected: |
| |
| typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; |
| |
| Index m_outerSize; |
| Index m_innerSize; |
| Index* m_outerIndex; |
| Index* m_innerNonZeros; // optional, if null then the data is compressed |
| Storage m_data; |
| |
| Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } |
| const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } |
| |
| public: |
| |
| /** \returns whether \c *this is in compressed form. */ |
| inline bool isCompressed() const { return m_innerNonZeros==0; } |
| |
| /** \returns the number of rows of the matrix */ |
| inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } |
| /** \returns the number of columns of the matrix */ |
| inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } |
| |
| /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ |
| inline Index innerSize() const { return m_innerSize; } |
| /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ |
| inline Index outerSize() const { return m_outerSize; } |
| |
| /** \returns a const pointer to the array of values. |
| * This function is aimed at interoperability with other libraries. |
| * \sa innerIndexPtr(), outerIndexPtr() */ |
| inline const Scalar* valuePtr() const { return &m_data.value(0); } |
| /** \returns a non-const pointer to the array of values. |
| * This function is aimed at interoperability with other libraries. |
| * \sa innerIndexPtr(), outerIndexPtr() */ |
| inline Scalar* valuePtr() { return &m_data.value(0); } |
| |
| /** \returns a const pointer to the array of inner indices. |
| * This function is aimed at interoperability with other libraries. |
| * \sa valuePtr(), outerIndexPtr() */ |
| inline const Index* innerIndexPtr() const { return &m_data.index(0); } |
| /** \returns a non-const pointer to the array of inner indices. |
| * This function is aimed at interoperability with other libraries. |
| * \sa valuePtr(), outerIndexPtr() */ |
| inline Index* innerIndexPtr() { return &m_data.index(0); } |
| |
| /** \returns a const pointer to the array of the starting positions of the inner vectors. |
| * This function is aimed at interoperability with other libraries. |
| * \sa valuePtr(), innerIndexPtr() */ |
| inline const Index* outerIndexPtr() const { return m_outerIndex; } |
| /** \returns a non-const pointer to the array of the starting positions of the inner vectors. |
| * This function is aimed at interoperability with other libraries. |
| * \sa valuePtr(), innerIndexPtr() */ |
| inline Index* outerIndexPtr() { return m_outerIndex; } |
| |
| /** \returns a const pointer to the array of the number of non zeros of the inner vectors. |
| * This function is aimed at interoperability with other libraries. |
| * \warning it returns the null pointer 0 in compressed mode */ |
| inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; } |
| /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. |
| * This function is aimed at interoperability with other libraries. |
| * \warning it returns the null pointer 0 in compressed mode */ |
| inline Index* innerNonZeroPtr() { return m_innerNonZeros; } |
| |
| /** \internal */ |
| inline Storage& data() { return m_data; } |
| /** \internal */ |
| inline const Storage& data() const { return m_data; } |
| |
| /** \returns the value of the matrix at position \a i, \a j |
| * This function returns Scalar(0) if the element is an explicit \em zero */ |
| inline Scalar coeff(Index row, Index col) const |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; |
| return m_data.atInRange(m_outerIndex[outer], end, inner); |
| } |
| |
| /** \returns a non-const reference to the value of the matrix at position \a i, \a j |
| * |
| * If the element does not exist then it is inserted via the insert(Index,Index) function |
| * which itself turns the matrix into a non compressed form if that was not the case. |
| * |
| * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) |
| * function if the element does not already exist. |
| */ |
| inline Scalar& coeffRef(Index row, Index col) |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| |
| Index start = m_outerIndex[outer]; |
| Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; |
| eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); |
| if(end<=start) |
| return insert(row,col); |
| const Index p = m_data.searchLowerIndex(start,end-1,inner); |
| if((p<end) && (m_data.index(p)==inner)) |
| return m_data.value(p); |
| else |
| return insert(row,col); |
| } |
| |
| /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. |
| * The non zero coefficient must \b not already exist. |
| * |
| * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed |
| * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first |
| * call reserve(const SizesType &) to reserve a more appropriate number of elements per |
| * inner vector that better match your scenario. |
| * |
| * This function performs a sorted insertion in O(1) if the elements of each inner vector are |
| * inserted in increasing inner index order, and in O(nnz_j) for a random insertion. |
| * |
| */ |
| EIGEN_DONT_INLINE Scalar& insert(Index row, Index col) |
| { |
| if(isCompressed()) |
| { |
| reserve(VectorXi::Constant(outerSize(), 2)); |
| } |
| return insertUncompressed(row,col); |
| } |
| |
| public: |
| |
| class InnerIterator; |
| class ReverseInnerIterator; |
| |
| /** Removes all non zeros but keep allocated memory */ |
| inline void setZero() |
| { |
| m_data.clear(); |
| memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); |
| if(m_innerNonZeros) |
| memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index)); |
| } |
| |
| /** \returns the number of non zero coefficients */ |
| inline Index nonZeros() const |
| { |
| if(m_innerNonZeros) |
| return innerNonZeros().sum(); |
| return static_cast<Index>(m_data.size()); |
| } |
| |
| /** Preallocates \a reserveSize non zeros. |
| * |
| * Precondition: the matrix must be in compressed mode. */ |
| inline void reserve(Index reserveSize) |
| { |
| eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); |
| m_data.reserve(reserveSize); |
| } |
| |
| #ifdef EIGEN_PARSED_BY_DOXYGEN |
| /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. |
| * |
| * This function turns the matrix in non-compressed mode */ |
| template<class SizesType> |
| inline void reserve(const SizesType& reserveSizes); |
| #else |
| template<class SizesType> |
| inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type()) |
| { |
| EIGEN_UNUSED_VARIABLE(enableif); |
| reserveInnerVectors(reserveSizes); |
| } |
| template<class SizesType> |
| inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif = |
| #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename |
| typename |
| #endif |
| SizesType::Scalar()) |
| { |
| EIGEN_UNUSED_VARIABLE(enableif); |
| reserveInnerVectors(reserveSizes); |
| } |
| #endif // EIGEN_PARSED_BY_DOXYGEN |
| protected: |
| template<class SizesType> |
| inline void reserveInnerVectors(const SizesType& reserveSizes) |
| { |
| |
| if(isCompressed()) |
| { |
| std::size_t totalReserveSize = 0; |
| // turn the matrix into non-compressed mode |
| m_innerNonZeros = new Index[m_outerSize]; |
| |
| // temporarily use m_innerSizes to hold the new starting points. |
| Index* newOuterIndex = m_innerNonZeros; |
| |
| Index count = 0; |
| for(Index j=0; j<m_outerSize; ++j) |
| { |
| newOuterIndex[j] = count; |
| count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); |
| totalReserveSize += reserveSizes[j]; |
| } |
| m_data.reserve(totalReserveSize); |
| std::ptrdiff_t previousOuterIndex = m_outerIndex[m_outerSize]; |
| for(std::ptrdiff_t j=m_outerSize-1; j>=0; --j) |
| { |
| ptrdiff_t innerNNZ = previousOuterIndex - m_outerIndex[j]; |
| for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) |
| { |
| m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); |
| m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); |
| } |
| previousOuterIndex = m_outerIndex[j]; |
| m_outerIndex[j] = newOuterIndex[j]; |
| m_innerNonZeros[j] = innerNNZ; |
| } |
| m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; |
| |
| m_data.resize(m_outerIndex[m_outerSize]); |
| } |
| else |
| { |
| Index* newOuterIndex = new Index[m_outerSize+1]; |
| Index count = 0; |
| for(Index j=0; j<m_outerSize; ++j) |
| { |
| newOuterIndex[j] = count; |
| Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j]; |
| Index toReserve = std::max<std::ptrdiff_t>(reserveSizes[j], alreadyReserved); |
| count += toReserve + m_innerNonZeros[j]; |
| } |
| newOuterIndex[m_outerSize] = count; |
| |
| m_data.resize(count); |
| for(ptrdiff_t j=m_outerSize-1; j>=0; --j) |
| { |
| std::ptrdiff_t offset = newOuterIndex[j] - m_outerIndex[j]; |
| if(offset>0) |
| { |
| std::ptrdiff_t innerNNZ = m_innerNonZeros[j]; |
| for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) |
| { |
| m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); |
| m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); |
| } |
| } |
| } |
| |
| std::swap(m_outerIndex, newOuterIndex); |
| delete[] newOuterIndex; |
| } |
| |
| } |
| public: |
| |
| //--- low level purely coherent filling --- |
| |
| /** \internal |
| * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: |
| * - the nonzero does not already exist |
| * - the new coefficient is the last one according to the storage order |
| * |
| * Before filling a given inner vector you must call the statVec(Index) function. |
| * |
| * After an insertion session, you should call the finalize() function. |
| * |
| * \sa insert, insertBackByOuterInner, startVec */ |
| inline Scalar& insertBack(Index row, Index col) |
| { |
| return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); |
| } |
| |
| /** \internal |
| * \sa insertBack, startVec */ |
| inline Scalar& insertBackByOuterInner(Index outer, Index inner) |
| { |
| eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); |
| eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)"); |
| Index p = m_outerIndex[outer+1]; |
| ++m_outerIndex[outer+1]; |
| m_data.append(0, inner); |
| return m_data.value(p); |
| } |
| |
| /** \internal |
| * \warning use it only if you know what you are doing */ |
| inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) |
| { |
| Index p = m_outerIndex[outer+1]; |
| ++m_outerIndex[outer+1]; |
| m_data.append(0, inner); |
| return m_data.value(p); |
| } |
| |
| /** \internal |
| * \sa insertBack, insertBackByOuterInner */ |
| inline void startVec(Index outer) |
| { |
| eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially"); |
| eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially"); |
| m_outerIndex[outer+1] = m_outerIndex[outer]; |
| } |
| |
| /** \internal |
| * Must be called after inserting a set of non zero entries using the low level compressed API. |
| */ |
| inline void finalize() |
| { |
| if(isCompressed()) |
| { |
| Index size = static_cast<Index>(m_data.size()); |
| Index i = m_outerSize; |
| // find the last filled column |
| while (i>=0 && m_outerIndex[i]==0) |
| --i; |
| ++i; |
| while (i<=m_outerSize) |
| { |
| m_outerIndex[i] = size; |
| ++i; |
| } |
| } |
| } |
| |
| //--- |
| |
| template<typename InputIterators> |
| void setFromTriplets(const InputIterators& begin, const InputIterators& end); |
| |
| void sumupDuplicates(); |
| |
| //--- |
| |
| /** \internal |
| * same as insert(Index,Index) except that the indices are given relative to the storage order */ |
| EIGEN_DONT_INLINE Scalar& insertByOuterInner(Index j, Index i) |
| { |
| return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); |
| } |
| |
| /** Turns the matrix into the \em compressed format. |
| */ |
| void makeCompressed() |
| { |
| if(isCompressed()) |
| return; |
| |
| Index oldStart = m_outerIndex[1]; |
| m_outerIndex[1] = m_innerNonZeros[0]; |
| for(Index j=1; j<m_outerSize; ++j) |
| { |
| Index nextOldStart = m_outerIndex[j+1]; |
| std::ptrdiff_t offset = oldStart - m_outerIndex[j]; |
| if(offset>0) |
| { |
| for(Index k=0; k<m_innerNonZeros[j]; ++k) |
| { |
| m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k); |
| m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k); |
| } |
| } |
| m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j]; |
| oldStart = nextOldStart; |
| } |
| delete[] m_innerNonZeros; |
| m_innerNonZeros = 0; |
| m_data.resize(m_outerIndex[m_outerSize]); |
| m_data.squeeze(); |
| } |
| |
| /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ |
| void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
| { |
| prune(default_prunning_func(reference,epsilon)); |
| } |
| |
| /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. |
| * The functor type \a KeepFunc must implement the following function: |
| * \code |
| * bool operator() (const Index& row, const Index& col, const Scalar& value) const; |
| * \endcode |
| * \sa prune(Scalar,RealScalar) |
| */ |
| template<typename KeepFunc> |
| void prune(const KeepFunc& keep = KeepFunc()) |
| { |
| // TODO optimize the uncompressed mode to avoid moving and allocating the data twice |
| // TODO also implement a unit test |
| makeCompressed(); |
| |
| Index k = 0; |
| for(Index j=0; j<m_outerSize; ++j) |
| { |
| Index previousStart = m_outerIndex[j]; |
| m_outerIndex[j] = k; |
| Index end = m_outerIndex[j+1]; |
| for(Index i=previousStart; i<end; ++i) |
| { |
| if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i))) |
| { |
| m_data.value(k) = m_data.value(i); |
| m_data.index(k) = m_data.index(i); |
| ++k; |
| } |
| } |
| } |
| m_outerIndex[m_outerSize] = k; |
| m_data.resize(k,0); |
| } |
| |
| /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. |
| * \sa resizeNonZeros(Index), reserve(), setZero() |
| */ |
| void resize(Index rows, Index cols) |
| { |
| const Index outerSize = IsRowMajor ? rows : cols; |
| m_innerSize = IsRowMajor ? cols : rows; |
| m_data.clear(); |
| if (m_outerSize != outerSize || m_outerSize==0) |
| { |
| delete[] m_outerIndex; |
| m_outerIndex = new Index [outerSize+1]; |
| m_outerSize = outerSize; |
| } |
| if(m_innerNonZeros) |
| { |
| delete[] m_innerNonZeros; |
| m_innerNonZeros = 0; |
| } |
| memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); |
| } |
| |
| /** \internal |
| * Resize the nonzero vector to \a size */ |
| void resizeNonZeros(Index size) |
| { |
| // TODO remove this function |
| m_data.resize(size); |
| } |
| |
| /** \returns a const expression of the diagonal coefficients */ |
| const Diagonal<const SparseMatrix> diagonal() const { return *this; } |
| |
| /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ |
| inline SparseMatrix() |
| : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| { |
| check_template_parameters(); |
| resize(0, 0); |
| } |
| |
| /** Constructs a \a rows \c x \a cols empty matrix */ |
| inline SparseMatrix(Index rows, Index cols) |
| : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| { |
| check_template_parameters(); |
| resize(rows, cols); |
| } |
| |
| /** Constructs a sparse matrix from the sparse expression \a other */ |
| template<typename OtherDerived> |
| inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| { |
| check_template_parameters(); |
| *this = other.derived(); |
| } |
| |
| /** Copy constructor (it performs a deep copy) */ |
| inline SparseMatrix(const SparseMatrix& other) |
| : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) |
| { |
| check_template_parameters(); |
| *this = other.derived(); |
| } |
| |
| /** Swaps the content of two sparse matrices of the same type. |
| * This is a fast operation that simply swaps the underlying pointers and parameters. */ |
| inline void swap(SparseMatrix& other) |
| { |
| //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| std::swap(m_outerIndex, other.m_outerIndex); |
| std::swap(m_innerSize, other.m_innerSize); |
| std::swap(m_outerSize, other.m_outerSize); |
| std::swap(m_innerNonZeros, other.m_innerNonZeros); |
| m_data.swap(other.m_data); |
| } |
| |
| inline SparseMatrix& operator=(const SparseMatrix& other) |
| { |
| if (other.isRValue()) |
| { |
| swap(other.const_cast_derived()); |
| } |
| else |
| { |
| initAssignment(other); |
| if(other.isCompressed()) |
| { |
| memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index)); |
| m_data = other.m_data; |
| } |
| else |
| { |
| Base::operator=(other); |
| } |
| } |
| return *this; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename Lhs, typename Rhs> |
| inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product) |
| { return Base::operator=(product); } |
| |
| template<typename OtherDerived> |
| inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other) |
| { return Base::operator=(other.derived()); } |
| |
| template<typename OtherDerived> |
| inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other) |
| { return Base::operator=(other.derived()); } |
| #endif |
| |
| template<typename OtherDerived> |
| EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other) |
| { |
| initAssignment(other.derived()); |
| const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); |
| if (needToTranspose) |
| { |
| // two passes algorithm: |
| // 1 - compute the number of coeffs per dest inner vector |
| // 2 - do the actual copy/eval |
| // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed |
| typedef typename internal::nested<OtherDerived,2>::type OtherCopy; |
| typedef typename internal::remove_all<OtherCopy>::type _OtherCopy; |
| OtherCopy otherCopy(other.derived()); |
| |
| Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero(); |
| // pass 1 |
| // FIXME the above copy could be merged with that pass |
| for (Index j=0; j<otherCopy.outerSize(); ++j) |
| for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| ++m_outerIndex[it.index()]; |
| |
| // prefix sum |
| Index count = 0; |
| VectorXi positions(outerSize()); |
| for (Index j=0; j<outerSize(); ++j) |
| { |
| Index tmp = m_outerIndex[j]; |
| m_outerIndex[j] = count; |
| positions[j] = count; |
| count += tmp; |
| } |
| m_outerIndex[outerSize()] = count; |
| // alloc |
| m_data.resize(count); |
| // pass 2 |
| for (Index j=0; j<otherCopy.outerSize(); ++j) |
| { |
| for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| { |
| Index pos = positions[it.index()]++; |
| m_data.index(pos) = j; |
| m_data.value(pos) = it.value(); |
| } |
| } |
| return *this; |
| } |
| else |
| { |
| // there is no special optimization |
| return Base::operator=(other.derived()); |
| } |
| } |
| |
| friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) |
| { |
| EIGEN_DBG_SPARSE( |
| s << "Nonzero entries:\n"; |
| if(m.isCompressed()) |
| for (Index i=0; i<m.nonZeros(); ++i) |
| s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; |
| else |
| for (Index i=0; i<m.outerSize(); ++i) |
| { |
| int p = m.m_outerIndex[i]; |
| int pe = m.m_outerIndex[i]+m.m_innerNonZeros[i]; |
| Index k=p; |
| for (; k<pe; ++k) |
| s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") "; |
| for (; k<m.m_outerIndex[i+1]; ++k) |
| s << "(_,_) "; |
| } |
| s << std::endl; |
| s << std::endl; |
| s << "Outer pointers:\n"; |
| for (Index i=0; i<m.outerSize(); ++i) |
| s << m.m_outerIndex[i] << " "; |
| s << " $" << std::endl; |
| if(!m.isCompressed()) |
| { |
| s << "Inner non zeros:\n"; |
| for (Index i=0; i<m.outerSize(); ++i) |
| s << m.m_innerNonZeros[i] << " "; |
| s << " $" << std::endl; |
| } |
| s << std::endl; |
| ); |
| s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); |
| return s; |
| } |
| |
| /** Destructor */ |
| inline ~SparseMatrix() |
| { |
| delete[] m_outerIndex; |
| delete[] m_innerNonZeros; |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** Overloaded for performance */ |
| Scalar sum() const; |
| #endif |
| |
| # ifdef EIGEN_SPARSEMATRIX_PLUGIN |
| # include EIGEN_SPARSEMATRIX_PLUGIN |
| # endif |
| |
| protected: |
| |
| template<typename Other> |
| void initAssignment(const Other& other) |
| { |
| resize(other.rows(), other.cols()); |
| if(m_innerNonZeros) |
| { |
| delete[] m_innerNonZeros; |
| m_innerNonZeros = 0; |
| } |
| } |
| |
| /** \internal |
| * \sa insert(Index,Index) */ |
| EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col) |
| { |
| eigen_assert(isCompressed()); |
| |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| |
| Index previousOuter = outer; |
| if (m_outerIndex[outer+1]==0) |
| { |
| // we start a new inner vector |
| while (previousOuter>=0 && m_outerIndex[previousOuter]==0) |
| { |
| m_outerIndex[previousOuter] = static_cast<Index>(m_data.size()); |
| --previousOuter; |
| } |
| m_outerIndex[outer+1] = m_outerIndex[outer]; |
| } |
| |
| // here we have to handle the tricky case where the outerIndex array |
| // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., |
| // the 2nd inner vector... |
| bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) |
| && (size_t(m_outerIndex[outer+1]) == m_data.size()); |
| |
| size_t startId = m_outerIndex[outer]; |
| // FIXME let's make sure sizeof(long int) == sizeof(size_t) |
| size_t p = m_outerIndex[outer+1]; |
| ++m_outerIndex[outer+1]; |
| |
| float reallocRatio = 1; |
| if (m_data.allocatedSize()<=m_data.size()) |
| { |
| // if there is no preallocated memory, let's reserve a minimum of 32 elements |
| if (m_data.size()==0) |
| { |
| m_data.reserve(32); |
| } |
| else |
| { |
| // we need to reallocate the data, to reduce multiple reallocations |
| // we use a smart resize algorithm based on the current filling ratio |
| // in addition, we use float to avoid integers overflows |
| float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1); |
| reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size()); |
| // furthermore we bound the realloc ratio to: |
| // 1) reduce multiple minor realloc when the matrix is almost filled |
| // 2) avoid to allocate too much memory when the matrix is almost empty |
| reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f); |
| } |
| } |
| m_data.resize(m_data.size()+1,reallocRatio); |
| |
| if (!isLastVec) |
| { |
| if (previousOuter==-1) |
| { |
| // oops wrong guess. |
| // let's correct the outer offsets |
| for (Index k=0; k<=(outer+1); ++k) |
| m_outerIndex[k] = 0; |
| Index k=outer+1; |
| while(m_outerIndex[k]==0) |
| m_outerIndex[k++] = 1; |
| while (k<=m_outerSize && m_outerIndex[k]!=0) |
| m_outerIndex[k++]++; |
| p = 0; |
| --k; |
| k = m_outerIndex[k]-1; |
| while (k>0) |
| { |
| m_data.index(k) = m_data.index(k-1); |
| m_data.value(k) = m_data.value(k-1); |
| k--; |
| } |
| } |
| else |
| { |
| // we are not inserting into the last inner vec |
| // update outer indices: |
| Index j = outer+2; |
| while (j<=m_outerSize && m_outerIndex[j]!=0) |
| m_outerIndex[j++]++; |
| --j; |
| // shift data of last vecs: |
| Index k = m_outerIndex[j]-1; |
| while (k>=Index(p)) |
| { |
| m_data.index(k) = m_data.index(k-1); |
| m_data.value(k) = m_data.value(k-1); |
| k--; |
| } |
| } |
| } |
| |
| while ( (p > startId) && (m_data.index(p-1) > inner) ) |
| { |
| m_data.index(p) = m_data.index(p-1); |
| m_data.value(p) = m_data.value(p-1); |
| --p; |
| } |
| |
| m_data.index(p) = inner; |
| return (m_data.value(p) = 0); |
| } |
| |
| /** \internal |
| * A vector object that is equal to 0 everywhere but v at the position i */ |
| class SingletonVector |
| { |
| Index m_index; |
| Index m_value; |
| public: |
| typedef Index value_type; |
| SingletonVector(Index i, Index v) |
| : m_index(i), m_value(v) |
| {} |
| |
| Index operator[](Index i) const { return i==m_index ? m_value : 0; } |
| }; |
| |
| /** \internal |
| * \sa insert(Index,Index) */ |
| EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col) |
| { |
| eigen_assert(!isCompressed()); |
| |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| |
| std::ptrdiff_t room = m_outerIndex[outer+1] - m_outerIndex[outer]; |
| std::ptrdiff_t innerNNZ = m_innerNonZeros[outer]; |
| if(innerNNZ>=room) |
| { |
| // this inner vector is full, we need to reallocate the whole buffer :( |
| reserve(SingletonVector(outer,std::max<std::ptrdiff_t>(2,innerNNZ))); |
| } |
| |
| Index startId = m_outerIndex[outer]; |
| Index p = startId + m_innerNonZeros[outer]; |
| while ( (p > startId) && (m_data.index(p-1) > inner) ) |
| { |
| m_data.index(p) = m_data.index(p-1); |
| m_data.value(p) = m_data.value(p-1); |
| --p; |
| } |
| |
| m_innerNonZeros[outer]++; |
| |
| m_data.index(p) = inner; |
| return (m_data.value(p) = 0); |
| } |
| |
| public: |
| /** \internal |
| * \sa insert(Index,Index) */ |
| EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) |
| { |
| const Index outer = IsRowMajor ? row : col; |
| const Index inner = IsRowMajor ? col : row; |
| |
| eigen_assert(!isCompressed()); |
| eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); |
| |
| Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; |
| m_data.index(p) = inner; |
| return (m_data.value(p) = 0); |
| } |
| |
| private: |
| static void check_template_parameters() |
| { |
| EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); |
| } |
| |
| struct default_prunning_func { |
| default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} |
| inline bool operator() (const Index&, const Index&, const Scalar& value) const |
| { |
| return !internal::isMuchSmallerThan(value, reference, epsilon); |
| } |
| Scalar reference; |
| RealScalar epsilon; |
| }; |
| }; |
| |
| template<typename Scalar, int _Options, typename _Index> |
| class SparseMatrix<Scalar,_Options,_Index>::InnerIterator |
| { |
| public: |
| InnerIterator(const SparseMatrix& mat, Index outer) |
| : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]) |
| { |
| if(mat.isCompressed()) |
| m_end = mat.m_outerIndex[outer+1]; |
| else |
| m_end = m_id + mat.m_innerNonZeros[outer]; |
| } |
| |
| inline InnerIterator& operator++() { m_id++; return *this; } |
| |
| inline const Scalar& value() const { return m_values[m_id]; } |
| inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); } |
| |
| inline Index index() const { return m_indices[m_id]; } |
| inline Index outer() const { return m_outer; } |
| inline Index row() const { return IsRowMajor ? m_outer : index(); } |
| inline Index col() const { return IsRowMajor ? index() : m_outer; } |
| |
| inline operator bool() const { return (m_id < m_end); } |
| |
| protected: |
| const Scalar* m_values; |
| const Index* m_indices; |
| const Index m_outer; |
| Index m_id; |
| Index m_end; |
| }; |
| |
| template<typename Scalar, int _Options, typename _Index> |
| class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator |
| { |
| public: |
| ReverseInnerIterator(const SparseMatrix& mat, Index outer) |
| : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer]) |
| { |
| if(mat.isCompressed()) |
| m_id = mat.m_outerIndex[outer+1]; |
| else |
| m_id = m_start + mat.m_innerNonZeros[outer]; |
| } |
| |
| inline ReverseInnerIterator& operator--() { --m_id; return *this; } |
| |
| inline const Scalar& value() const { return m_values[m_id-1]; } |
| inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); } |
| |
| inline Index index() const { return m_indices[m_id-1]; } |
| inline Index outer() const { return m_outer; } |
| inline Index row() const { return IsRowMajor ? m_outer : index(); } |
| inline Index col() const { return IsRowMajor ? index() : m_outer; } |
| |
| inline operator bool() const { return (m_id > m_start); } |
| |
| protected: |
| const Scalar* m_values; |
| const Index* m_indices; |
| const Index m_outer; |
| Index m_id; |
| const Index m_start; |
| }; |
| |
| namespace internal { |
| |
| template<typename InputIterator, typename SparseMatrixType> |
| void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0) |
| { |
| EIGEN_UNUSED_VARIABLE(Options); |
| enum { IsRowMajor = SparseMatrixType::IsRowMajor }; |
| typedef typename SparseMatrixType::Scalar Scalar; |
| typedef typename SparseMatrixType::Index Index; |
| SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols()); |
| |
| // pass 1: count the nnz per inner-vector |
| VectorXi wi(trMat.outerSize()); |
| wi.setZero(); |
| for(InputIterator it(begin); it!=end; ++it) |
| wi(IsRowMajor ? it->col() : it->row())++; |
| |
| // pass 2: insert all the elements into trMat |
| trMat.reserve(wi); |
| for(InputIterator it(begin); it!=end; ++it) |
| trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); |
| |
| // pass 3: |
| trMat.sumupDuplicates(); |
| |
| // pass 4: transposed copy -> implicit sorting |
| mat = trMat; |
| } |
| |
| } |
| |
| |
| /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \b. |
| * |
| * A \em triplet is a tuple (i,j,value) defining a non-zero element. |
| * The input list of triplets does not have to be sorted, and can contains duplicated elements. |
| * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. |
| * This is a \em O(n) operation, with \em n the number of triplet elements. |
| * The initial contents of \c *this is destroyed. |
| * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, |
| * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. |
| * |
| * The \a InputIterators value_type must provide the following interface: |
| * \code |
| * Scalar value() const; // the value |
| * Scalar row() const; // the row index i |
| * Scalar col() const; // the column index j |
| * \endcode |
| * See for instance the Eigen::Triplet template class. |
| * |
| * Here is a typical usage example: |
| * \code |
| typedef Triplet<double> T; |
| std::vector<T> tripletList; |
| triplets.reserve(estimation_of_entries); |
| for(...) |
| { |
| // ... |
| tripletList.push_back(T(i,j,v_ij)); |
| } |
| SparseMatrixType m(rows,cols); |
| m.setFromTriplets(tripletList.begin(), tripletList.end()); |
| // m is ready to go! |
| * \endcode |
| * |
| * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define |
| * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather |
| * be explicitely stored into a std::vector for instance. |
| */ |
| template<typename Scalar, int _Options, typename _Index> |
| template<typename InputIterators> |
| void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end) |
| { |
| internal::set_from_triplets(begin, end, *this); |
| } |
| |
| /** \internal */ |
| template<typename Scalar, int _Options, typename _Index> |
| void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates() |
| { |
| eigen_assert(!isCompressed()); |
| // TODO, in practice we should be able to use m_innerNonZeros for that task |
| VectorXi wi(innerSize()); |
| wi.fill(-1); |
| Index count = 0; |
| // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers |
| for(int j=0; j<outerSize(); ++j) |
| { |
| Index start = count; |
| Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j]; |
| for(Index k=m_outerIndex[j]; k<oldEnd; ++k) |
| { |
| Index i = m_data.index(k); |
| if(wi(i)>=start) |
| { |
| // we already meet this entry => accumulate it |
| m_data.value(wi(i)) += m_data.value(k); |
| } |
| else |
| { |
| m_data.value(count) = m_data.value(k); |
| m_data.index(count) = m_data.index(k); |
| wi(i) = count; |
| ++count; |
| } |
| } |
| m_outerIndex[j] = start; |
| } |
| m_outerIndex[m_outerSize] = count; |
| |
| // turn the matrix into compressed form |
| delete[] m_innerNonZeros; |
| m_innerNonZeros = 0; |
| m_data.resize(m_outerIndex[m_outerSize]); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSEMATRIX_H |