| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "lapack_common.h" |
| #include <Eigen/Cholesky> |
| |
| // POTRF computes the Cholesky factorization of a real symmetric positive definite matrix A. |
| EIGEN_LAPACK_FUNC(potrf,(char* uplo, int *n, RealScalar *pa, int *lda, int *info)) |
| { |
| *info = 0; |
| if(UPLO(*uplo)==INVALID) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*lda<std::max(1,*n)) *info = -4; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"POTRF", &e, 6); |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| MatrixType A(a,*n,*n,*lda); |
| int ret; |
| if(UPLO(*uplo)==UP) ret = internal::llt_inplace<Scalar, Upper>::blocked(A); |
| else ret = internal::llt_inplace<Scalar, Lower>::blocked(A); |
| |
| if(ret>=0) |
| *info = ret+1; |
| |
| return 0; |
| } |
| |
| // POTRS solves a system of linear equations A*X = B with a symmetric |
| // positive definite matrix A using the Cholesky factorization |
| // A = U**T*U or A = L*L**T computed by DPOTRF. |
| EIGEN_LAPACK_FUNC(potrs,(char* uplo, int *n, int *nrhs, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, int *info)) |
| { |
| *info = 0; |
| if(UPLO(*uplo)==INVALID) *info = -1; |
| else if(*n<0) *info = -2; |
| else if(*nrhs<0) *info = -3; |
| else if(*lda<std::max(1,*n)) *info = -5; |
| else if(*ldb<std::max(1,*n)) *info = -7; |
| if(*info!=0) |
| { |
| int e = -*info; |
| return xerbla_(SCALAR_SUFFIX_UP"POTRS", &e, 6); |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| MatrixType A(a,*n,*n,*lda); |
| MatrixType B(b,*n,*nrhs,*ldb); |
| |
| if(UPLO(*uplo)==UP) |
| { |
| A.triangularView<Upper>().adjoint().solveInPlace(B); |
| A.triangularView<Upper>().solveInPlace(B); |
| } |
| else |
| { |
| A.triangularView<Lower>().solveInPlace(B); |
| A.triangularView<Lower>().adjoint().solveInPlace(B); |
| } |
| |
| return 0; |
| } |