| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths |
| #include "main.h" |
| |
| template<typename MatrixType> void block(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; |
| typedef Matrix<Scalar, Dynamic, Dynamic> DynamicMatrixType; |
| typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m1_copy = m1, |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| ones = MatrixType::Ones(rows, cols); |
| VectorType v1 = VectorType::Random(rows); |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index r1 = internal::random<Index>(0,rows-1); |
| Index r2 = internal::random<Index>(r1,rows-1); |
| Index c1 = internal::random<Index>(0,cols-1); |
| Index c2 = internal::random<Index>(c1,cols-1); |
| |
| //check row() and col() |
| VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1)); |
| //check operator(), both constant and non-constant, on row() and col() |
| m1 = m1_copy; |
| m1.row(r1) += s1 * m1_copy.row(r2); |
| VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2)); |
| // check nested block xpr on lhs |
| m1.row(r1).row(0) += s1 * m1_copy.row(r2); |
| VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2)); |
| m1 = m1_copy; |
| m1.col(c1) += s1 * m1_copy.col(c2); |
| VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2)); |
| m1.col(c1).col(0) += s1 * m1_copy.col(c2); |
| VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2)); |
| |
| //check block() |
| Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1); |
| |
| RowVectorType br1(m1.block(r1,0,1,cols)); |
| VectorType bc1(m1.block(0,c1,rows,1)); |
| VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1)); |
| VERIFY_IS_EQUAL(m1.row(r1), br1); |
| VERIFY_IS_EQUAL(m1.col(c1), bc1); |
| //check operator(), both constant and non-constant, on block() |
| m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1); |
| m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0); |
| |
| enum { |
| BlockRows = 2, |
| BlockCols = 5 |
| }; |
| if (rows>=5 && cols>=8) |
| { |
| // test fixed block() as lvalue |
| m1.template block<BlockRows,BlockCols>(1,1) *= s1; |
| // test operator() on fixed block() both as constant and non-constant |
| m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2); |
| // check that fixed block() and block() agree |
| Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3); |
| VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols)); |
| } |
| |
| if (rows>2) |
| { |
| // test sub vectors |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2)); |
| VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0)); |
| Index i = rows-2; |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2)); |
| VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i)); |
| i = internal::random<Index>(0,rows-2); |
| VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i)); |
| } |
| |
| // stress some basic stuffs with block matrices |
| VERIFY(internal::real(ones.col(c1).sum()) == RealScalar(rows)); |
| VERIFY(internal::real(ones.row(r1).sum()) == RealScalar(cols)); |
| |
| VERIFY(internal::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows)); |
| VERIFY(internal::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols)); |
| |
| // now test some block-inside-of-block. |
| |
| // expressions with direct access |
| VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) ); |
| VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) ); |
| VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) ); |
| VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() ); |
| VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() ); |
| |
| // expressions without direct access |
| VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) ); |
| VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) ); |
| VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) ); |
| VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() ); |
| VERIFY_IS_EQUAL( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() ); |
| |
| // evaluation into plain matrices from expressions with direct access (stress MapBase) |
| DynamicMatrixType dm; |
| DynamicVectorType dv; |
| dm.setZero(); |
| dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2); |
| VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2))); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose(); |
| dv = m1.row(r1).segment(c1,c2-c1+1); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.col(c1).segment(r1,r2-r1+1); |
| dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0); |
| dv = m1.row(r1).segment(c1,c2-c1+1); |
| VERIFY_IS_EQUAL(dv, dm); |
| dm.setZero(); |
| dv.setZero(); |
| dm = m1.row(r1).segment(c1,c2-c1+1).transpose(); |
| dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0); |
| VERIFY_IS_EQUAL(dv, dm); |
| } |
| |
| |
| template<typename MatrixType> |
| void compare_using_data_and_stride(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| Index size = m.size(); |
| Index innerStride = m.innerStride(); |
| Index outerStride = m.outerStride(); |
| Index rowStride = m.rowStride(); |
| Index colStride = m.colStride(); |
| const typename MatrixType::Scalar* data = m.data(); |
| |
| for(int j=0;j<cols;++j) |
| for(int i=0;i<rows;++i) |
| VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]); |
| |
| if(!MatrixType::IsVectorAtCompileTime) |
| { |
| for(int j=0;j<cols;++j) |
| for(int i=0;i<rows;++i) |
| VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit) |
| ? i*outerStride + j*innerStride |
| : j*outerStride + i*innerStride]); |
| } |
| |
| if(MatrixType::IsVectorAtCompileTime) |
| { |
| VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0)))); |
| for (int i=0;i<size;++i) |
| VERIFY(m.coeff(i) == data[i*innerStride]); |
| } |
| } |
| |
| template<typename MatrixType> |
| void data_and_stride(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Index r1 = internal::random<Index>(0,rows-1); |
| Index r2 = internal::random<Index>(r1,rows-1); |
| Index c1 = internal::random<Index>(0,cols-1); |
| Index c2 = internal::random<Index>(c1,cols-1); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols); |
| compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1)); |
| compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1)); |
| compare_using_data_and_stride(m1.row(r1)); |
| compare_using_data_and_stride(m1.col(c1)); |
| compare_using_data_and_stride(m1.row(r1).transpose()); |
| compare_using_data_and_stride(m1.col(c1).transpose()); |
| } |
| |
| void test_block() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( block(Matrix4d()) ); |
| CALL_SUBTEST_3( block(MatrixXcf(3, 3)) ); |
| CALL_SUBTEST_4( block(MatrixXi(8, 12)) ); |
| CALL_SUBTEST_5( block(MatrixXcd(20, 20)) ); |
| CALL_SUBTEST_6( block(MatrixXf(20, 20)) ); |
| |
| CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) ); |
| |
| #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR |
| CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) ); |
| CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) ); |
| #endif |
| } |
| } |