| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| #include <Eigen/LU> |
| |
| /* Check that two column vectors are approximately equal upto permutations, |
| by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */ |
| template<typename VectorType> |
| void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) |
| { |
| typedef typename NumTraits<typename VectorType::Scalar>::Real RealScalar; |
| |
| VERIFY(vec1.cols() == 1); |
| VERIFY(vec2.cols() == 1); |
| VERIFY(vec1.rows() == vec2.rows()); |
| for (int k = 1; k <= vec1.rows(); ++k) |
| { |
| VERIFY_IS_APPROX(vec1.array().pow(RealScalar(k)).sum(), vec2.array().pow(RealScalar(k)).sum()); |
| } |
| } |
| |
| |
| template<typename MatrixType> void eigensolver(const MatrixType& m) |
| { |
| typedef typename MatrixType::Index Index; |
| /* this test covers the following files: |
| ComplexEigenSolver.h, and indirectly ComplexSchur.h |
| */ |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a; |
| |
| ComplexEigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_EQUAL(ei0.info(), Success); |
| VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
| |
| ComplexEigenSolver<MatrixType> ei1(a); |
| VERIFY_IS_EQUAL(ei1.info(), Success); |
| VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus |
| // another algorithm so results may differ slightly |
| verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); |
| |
| ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); |
| VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
| VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
| |
| // Regression test for issue #66 |
| MatrixType z = MatrixType::Zero(rows,cols); |
| ComplexEigenSolver<MatrixType> eiz(z); |
| VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
| |
| MatrixType id = MatrixType::Identity(rows, cols); |
| VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
| |
| if (rows > 1) |
| { |
| // Test matrix with NaN |
| a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
| ComplexEigenSolver<MatrixType> eiNaN(a); |
| VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
| } |
| } |
| |
| template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
| { |
| ComplexEigenSolver<MatrixType> eig; |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
| |
| MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
| eig.compute(a, false); |
| VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
| } |
| |
| void test_eigensolver_complex() |
| { |
| int s; |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); |
| CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); |
| CALL_SUBTEST_4( eigensolver(Matrix3f()) ); |
| } |
| |
| CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); |
| s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
| CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); |
| CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); |
| CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf>(s)); |
| |
| EIGEN_UNUSED_VARIABLE(s) |
| } |