| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<int Alignment,typename VectorType> void map_class_vector(const VectorType& m) |
| { |
| typedef typename VectorType::Index Index; |
| typedef typename VectorType::Scalar Scalar; |
| |
| Index size = m.size(); |
| |
| VectorType v = VectorType::Random(size); |
| |
| Index arraysize = 3*size; |
| |
| Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); |
| Scalar* array = a_array; |
| if(Alignment!=Aligned) |
| array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); |
| |
| { |
| Map<VectorType, Alignment, InnerStride<3> > map(array, size); |
| map = v; |
| for(int i = 0; i < size; ++i) |
| { |
| VERIFY(array[3*i] == v[i]); |
| VERIFY(map[i] == v[i]); |
| } |
| } |
| |
| { |
| Map<VectorType, Unaligned, InnerStride<Dynamic> > map(array, size, InnerStride<Dynamic>(2)); |
| map = v; |
| for(int i = 0; i < size; ++i) |
| { |
| VERIFY(array[2*i] == v[i]); |
| VERIFY(map[i] == v[i]); |
| } |
| } |
| |
| internal::aligned_delete(a_array, arraysize+1); |
| } |
| |
| template<int Alignment,typename MatrixType> void map_class_matrix(const MatrixType& _m) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| |
| Index rows = _m.rows(), cols = _m.cols(); |
| |
| MatrixType m = MatrixType::Random(rows,cols); |
| |
| Index arraysize = 2*(rows+4)*(cols+4); |
| |
| Scalar* a_array = internal::aligned_new<Scalar>(arraysize+1); |
| Scalar* array = a_array; |
| if(Alignment!=Aligned) |
| array = (Scalar*)(ptrdiff_t(a_array) + (internal::packet_traits<Scalar>::AlignedOnScalar?sizeof(Scalar):sizeof(typename NumTraits<Scalar>::Real))); |
| |
| // test no inner stride and some dynamic outer stride |
| { |
| Map<MatrixType, Alignment, OuterStride<Dynamic> > map(array, rows, cols, OuterStride<Dynamic>(m.innerSize()+1)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize()+1); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); |
| VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); |
| } |
| } |
| |
| // test no inner stride and an outer stride of +4. This is quite important as for fixed-size matrices, |
| // this allows to hit the special case where it's vectorizable. |
| { |
| enum { |
| InnerSize = MatrixType::InnerSizeAtCompileTime, |
| OuterStrideAtCompileTime = InnerSize==Dynamic ? Dynamic : InnerSize+4 |
| }; |
| Map<MatrixType, Alignment, OuterStride<OuterStrideAtCompileTime> > |
| map(array, rows, cols, OuterStride<OuterStrideAtCompileTime>(m.innerSize()+4)); |
| map = m; |
| VERIFY(map.outerStride() == map.innerSize()+4); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY(array[map.outerStride()*i+j] == m.coeffByOuterInner(i,j)); |
| VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); |
| } |
| } |
| |
| // test both inner stride and outer stride |
| { |
| Map<MatrixType, Alignment, Stride<Dynamic,Dynamic> > map(array, rows, cols, Stride<Dynamic,Dynamic>(2*m.innerSize()+1, 2)); |
| map = m; |
| VERIFY(map.outerStride() == 2*map.innerSize()+1); |
| VERIFY(map.innerStride() == 2); |
| for(int i = 0; i < m.outerSize(); ++i) |
| for(int j = 0; j < m.innerSize(); ++j) |
| { |
| VERIFY(array[map.outerStride()*i+map.innerStride()*j] == m.coeffByOuterInner(i,j)); |
| VERIFY(map.coeffByOuterInner(i,j) == m.coeffByOuterInner(i,j)); |
| } |
| } |
| |
| internal::aligned_delete(a_array, arraysize+1); |
| } |
| |
| void test_mapstride() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| EIGEN_UNUSED int maxn = 30; |
| CALL_SUBTEST_1( map_class_vector<Aligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( map_class_vector<Unaligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( map_class_vector<Aligned>(Vector4d()) ); |
| CALL_SUBTEST_2( map_class_vector<Unaligned>(Vector4d()) ); |
| CALL_SUBTEST_3( map_class_vector<Aligned>(RowVector4f()) ); |
| CALL_SUBTEST_3( map_class_vector<Unaligned>(RowVector4f()) ); |
| CALL_SUBTEST_4( map_class_vector<Aligned>(VectorXcf(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_4( map_class_vector<Unaligned>(VectorXcf(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_vector<Aligned>(VectorXi(internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_vector<Unaligned>(VectorXi(internal::random<int>(1,maxn))) ); |
| |
| CALL_SUBTEST_1( map_class_matrix<Aligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_1( map_class_matrix<Unaligned>(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( map_class_matrix<Aligned>(Matrix4d()) ); |
| CALL_SUBTEST_2( map_class_matrix<Unaligned>(Matrix4d()) ); |
| CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,3,5>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,3,5>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Aligned>(Matrix<float,4,8>()) ); |
| CALL_SUBTEST_3( map_class_matrix<Unaligned>(Matrix<float,4,8>()) ); |
| CALL_SUBTEST_4( map_class_matrix<Aligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_4( map_class_matrix<Unaligned>(MatrixXcf(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_matrix<Aligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_5( map_class_matrix<Unaligned>(MatrixXi(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_6( map_class_matrix<Aligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| CALL_SUBTEST_6( map_class_matrix<Unaligned>(MatrixXcd(internal::random<int>(1,maxn),internal::random<int>(1,maxn))) ); |
| } |
| } |