| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <limits> |
| #include <Eigen/Eigenvalues> |
| |
| template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T) |
| { |
| typedef typename MatrixType::Index Index; |
| |
| const Index size = T.cols(); |
| typedef typename MatrixType::Scalar Scalar; |
| |
| // Check T is lower Hessenberg |
| for(int row = 2; row < size; ++row) { |
| for(int col = 0; col < row - 1; ++col) { |
| VERIFY(T(row,col) == Scalar(0)); |
| } |
| } |
| |
| // Check that any non-zero on the subdiagonal is followed by a zero and is |
| // part of a 2x2 diagonal block with imaginary eigenvalues. |
| for(int row = 1; row < size; ++row) { |
| if (T(row,row-1) != Scalar(0)) { |
| VERIFY(row == size-1 || T(row+1,row) == 0); |
| Scalar tr = T(row-1,row-1) + T(row,row); |
| Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1); |
| VERIFY(4 * det > tr * tr); |
| } |
| } |
| } |
| |
| template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime) |
| { |
| // Test basic functionality: T is quasi-triangular and A = U T U* |
| for(int counter = 0; counter < g_repeat; ++counter) { |
| MatrixType A = MatrixType::Random(size, size); |
| RealSchur<MatrixType> schurOfA(A); |
| VERIFY_IS_EQUAL(schurOfA.info(), Success); |
| MatrixType U = schurOfA.matrixU(); |
| MatrixType T = schurOfA.matrixT(); |
| verifyIsQuasiTriangular(T); |
| VERIFY_IS_APPROX(A, U * T * U.transpose()); |
| } |
| |
| // Test asserts when not initialized |
| RealSchur<MatrixType> rsUninitialized; |
| VERIFY_RAISES_ASSERT(rsUninitialized.matrixT()); |
| VERIFY_RAISES_ASSERT(rsUninitialized.matrixU()); |
| VERIFY_RAISES_ASSERT(rsUninitialized.info()); |
| |
| // Test whether compute() and constructor returns same result |
| MatrixType A = MatrixType::Random(size, size); |
| RealSchur<MatrixType> rs1; |
| rs1.compute(A); |
| RealSchur<MatrixType> rs2(A); |
| VERIFY_IS_EQUAL(rs1.info(), Success); |
| VERIFY_IS_EQUAL(rs2.info(), Success); |
| VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT()); |
| VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU()); |
| |
| // Test computation of only T, not U |
| RealSchur<MatrixType> rsOnlyT(A, false); |
| VERIFY_IS_EQUAL(rsOnlyT.info(), Success); |
| VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT()); |
| VERIFY_RAISES_ASSERT(rsOnlyT.matrixU()); |
| |
| if (size > 2) |
| { |
| // Test matrix with NaN |
| A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN(); |
| RealSchur<MatrixType> rsNaN(A); |
| VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence); |
| } |
| } |
| |
| void test_schur_real() |
| { |
| CALL_SUBTEST_1(( schur<Matrix4f>() )); |
| CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) )); |
| CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() )); |
| CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() )); |
| |
| // Test problem size constructors |
| CALL_SUBTEST_5(RealSchur<MatrixXf>(10)); |
| } |