| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| |
| template<typename T> bool isNotNaN(const T& x) |
| { |
| return x==x; |
| } |
| |
| // workaround aggressive optimization in ICC |
| template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } |
| |
| template<typename T> bool isFinite(const T& x) |
| { |
| return isNotNaN(sub(x,x)); |
| } |
| |
| template<typename T> EIGEN_DONT_INLINE T copy(const T& x) |
| { |
| return x; |
| } |
| |
| template<typename MatrixType> void stable_norm(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| StableNorm.h |
| */ |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| // Check the basic machine-dependent constants. |
| { |
| int ibeta, it, iemin, iemax; |
| |
| ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers |
| it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa |
| iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent |
| iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent |
| |
| VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2)) |
| && "the stable norm algorithm cannot be guaranteed on this computer"); |
| } |
| |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| Scalar big = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4)); |
| Scalar small = internal::random<Scalar>() * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4)); |
| |
| MatrixType vzero = MatrixType::Zero(rows, cols), |
| vrand = MatrixType::Random(rows, cols), |
| vbig(rows, cols), |
| vsmall(rows,cols); |
| |
| vbig.fill(big); |
| vsmall.fill(small); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1)); |
| VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm()); |
| VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm()); |
| VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm()); |
| |
| RealScalar size = static_cast<RealScalar>(m.size()); |
| |
| // test isFinite |
| VERIFY(!isFinite( std::numeric_limits<RealScalar>::infinity())); |
| VERIFY(!isFinite(internal::sqrt(-internal::abs(big)))); |
| |
| // test overflow |
| VERIFY(isFinite(internal::sqrt(size)*internal::abs(big))); |
| VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vbig.squaredNorm())), internal::abs(internal::sqrt(size)*big)); // here the default norm must fail |
| VERIFY_IS_APPROX(vbig.stableNorm(), internal::sqrt(size)*internal::abs(big)); |
| VERIFY_IS_APPROX(vbig.blueNorm(), internal::sqrt(size)*internal::abs(big)); |
| VERIFY_IS_APPROX(vbig.hypotNorm(), internal::sqrt(size)*internal::abs(big)); |
| |
| // test underflow |
| VERIFY(isFinite(internal::sqrt(size)*internal::abs(small))); |
| VERIFY_IS_NOT_APPROX(internal::sqrt(copy(vsmall.squaredNorm())), internal::abs(internal::sqrt(size)*small)); // here the default norm must fail |
| VERIFY_IS_APPROX(vsmall.stableNorm(), internal::sqrt(size)*internal::abs(small)); |
| VERIFY_IS_APPROX(vsmall.blueNorm(), internal::sqrt(size)*internal::abs(small)); |
| VERIFY_IS_APPROX(vsmall.hypotNorm(), internal::sqrt(size)*internal::abs(small)); |
| |
| // Test compilation of cwise() version |
| VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm()); |
| VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm()); |
| } |
| |
| void test_stable_norm() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( stable_norm(Vector4d()) ); |
| CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) ); |
| CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) ); |
| CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) ); |
| } |
| } |