| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Mark Borgerding mark a borgerding net |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_FFT_H |
| #define EIGEN_FFT_H |
| |
| #include <complex> |
| #include <vector> |
| #include <map> |
| #include <Eigen/Core> |
| |
| |
| /** \ingroup Unsupported_modules |
| * \defgroup FFT_Module Fast Fourier Transform module |
| * |
| * \code |
| * #include <unsupported/Eigen/FFT> |
| * \endcode |
| * |
| * This module provides Fast Fourier transformation, with a configurable backend |
| * implementation. |
| * |
| * The default implementation is based on kissfft. It is a small, free, and |
| * reasonably efficient default. |
| * |
| * There are currently two implementation backend: |
| * |
| * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. |
| * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form. |
| * |
| * \section FFTDesign Design |
| * |
| * The following design decisions were made concerning scaling and |
| * half-spectrum for real FFT. |
| * |
| * The intent is to facilitate generic programming and ease migrating code |
| * from Matlab/octave. |
| * We think the default behavior of Eigen/FFT should favor correctness and |
| * generality over speed. Of course, the caller should be able to "opt-out" from this |
| * behavior and get the speed increase if they want it. |
| * |
| * 1) %Scaling: |
| * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there |
| * is a constant gain incurred after the forward&inverse transforms , so |
| * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply. |
| * The downside is that algorithms that worked correctly in Matlab/octave |
| * don't behave the same way once implemented in C++. |
| * |
| * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. |
| * |
| * 2) Real FFT half-spectrum |
| * Other libraries use only half the frequency spectrum (plus one extra |
| * sample for the Nyquist bin) for a real FFT, the other half is the |
| * conjugate-symmetric of the first half. This saves them a copy and some |
| * memory. The downside is the caller needs to have special logic for the |
| * number of bins in complex vs real. |
| * |
| * How Eigen/FFT differs: The full spectrum is returned from the forward |
| * transform. This facilitates generic template programming by obviating |
| * separate specializations for real vs complex. On the inverse |
| * transform, only half the spectrum is actually used if the output type is real. |
| */ |
| |
| |
| #ifdef EIGEN_FFTW_DEFAULT |
| // FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size |
| # include <fftw3.h> |
| # include "src/FFT/ei_fftw_impl.h" |
| namespace Eigen { |
| //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work |
| template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {}; |
| } |
| #elif defined EIGEN_MKL_DEFAULT |
| // TODO |
| // intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form |
| # include "src/FFT/ei_imklfft_impl.h" |
| namespace Eigen { |
| template <typename T> struct default_fft_impl : public internal::imklfft_impl {}; |
| } |
| #else |
| // internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft |
| // |
| # include "src/FFT/ei_kissfft_impl.h" |
| namespace Eigen { |
| template <typename T> |
| struct default_fft_impl : public internal::kissfft_impl<T> {}; |
| } |
| #endif |
| |
| namespace Eigen { |
| |
| |
| // |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy; |
| template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy; |
| |
| namespace internal { |
| template<typename T_SrcMat,typename T_FftIfc> |
| struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> > |
| { |
| typedef typename T_SrcMat::PlainObject ReturnType; |
| }; |
| template<typename T_SrcMat,typename T_FftIfc> |
| struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> > |
| { |
| typedef typename T_SrcMat::PlainObject ReturnType; |
| }; |
| } |
| |
| template<typename T_SrcMat,typename T_FftIfc> |
| struct fft_fwd_proxy |
| : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> > |
| { |
| typedef DenseIndex Index; |
| |
| fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} |
| |
| template<typename T_DestMat> void evalTo(T_DestMat& dst) const; |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| protected: |
| const T_SrcMat & m_src; |
| T_FftIfc & m_ifc; |
| Index m_nfft; |
| private: |
| fft_fwd_proxy& operator=(const fft_fwd_proxy&); |
| }; |
| |
| template<typename T_SrcMat,typename T_FftIfc> |
| struct fft_inv_proxy |
| : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> > |
| { |
| typedef DenseIndex Index; |
| |
| fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} |
| |
| template<typename T_DestMat> void evalTo(T_DestMat& dst) const; |
| |
| Index rows() const { return m_src.rows(); } |
| Index cols() const { return m_src.cols(); } |
| protected: |
| const T_SrcMat & m_src; |
| T_FftIfc & m_ifc; |
| Index m_nfft; |
| private: |
| fft_inv_proxy& operator=(const fft_inv_proxy&); |
| }; |
| |
| |
| template <typename T_Scalar, |
| typename T_Impl=default_fft_impl<T_Scalar> > |
| class FFT |
| { |
| public: |
| typedef T_Impl impl_type; |
| typedef DenseIndex Index; |
| typedef typename impl_type::Scalar Scalar; |
| typedef typename impl_type::Complex Complex; |
| |
| enum Flag { |
| Default=0, // goof proof |
| Unscaled=1, |
| HalfSpectrum=2, |
| // SomeOtherSpeedOptimization=4 |
| Speedy=32767 |
| }; |
| |
| FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { } |
| |
| inline |
| bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;} |
| |
| inline |
| void SetFlag(Flag f) { m_flag |= (int)f;} |
| |
| inline |
| void ClearFlag(Flag f) { m_flag &= (~(int)f);} |
| |
| inline |
| void fwd( Complex * dst, const Scalar * src, Index nfft) |
| { |
| m_impl.fwd(dst,src,static_cast<int>(nfft)); |
| if ( HasFlag(HalfSpectrum) == false) |
| ReflectSpectrum(dst,nfft); |
| } |
| |
| inline |
| void fwd( Complex * dst, const Complex * src, Index nfft) |
| { |
| m_impl.fwd(dst,src,static_cast<int>(nfft)); |
| } |
| |
| /* |
| inline |
| void fwd2(Complex * dst, const Complex * src, int n0,int n1) |
| { |
| m_impl.fwd2(dst,src,n0,n1); |
| } |
| */ |
| |
| template <typename _Input> |
| inline |
| void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) |
| { |
| if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) |
| dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin |
| else |
| dst.resize(src.size()); |
| fwd(&dst[0],&src[0],src.size()); |
| } |
| |
| template<typename InputDerived, typename ComplexDerived> |
| inline |
| void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1) |
| { |
| typedef typename ComplexDerived::Scalar dst_type; |
| typedef typename InputDerived::Scalar src_type; |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time |
| EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, |
| THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) |
| |
| if (nfft<1) |
| nfft = src.size(); |
| |
| if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) ) |
| dst.derived().resize( (nfft>>1)+1); |
| else |
| dst.derived().resize(nfft); |
| |
| if ( src.innerStride() != 1 || src.size() < nfft ) { |
| Matrix<src_type,1,Dynamic> tmp; |
| if (src.size()<nfft) { |
| tmp.setZero(nfft); |
| tmp.block(0,0,src.size(),1 ) = src; |
| }else{ |
| tmp = src; |
| } |
| fwd( &dst[0],&tmp[0],nfft ); |
| }else{ |
| fwd( &dst[0],&src[0],nfft ); |
| } |
| } |
| |
| template<typename InputDerived> |
| inline |
| fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > |
| fwd( const MatrixBase<InputDerived> & src, Index nfft=-1) |
| { |
| return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); |
| } |
| |
| template<typename InputDerived> |
| inline |
| fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > |
| inv( const MatrixBase<InputDerived> & src, Index nfft=-1) |
| { |
| return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); |
| } |
| |
| inline |
| void inv( Complex * dst, const Complex * src, Index nfft) |
| { |
| m_impl.inv( dst,src,static_cast<int>(nfft) ); |
| if ( HasFlag( Unscaled ) == false) |
| scale(dst,Scalar(1./nfft),nfft); // scale the time series |
| } |
| |
| inline |
| void inv( Scalar * dst, const Complex * src, Index nfft) |
| { |
| m_impl.inv( dst,src,static_cast<int>(nfft) ); |
| if ( HasFlag( Unscaled ) == false) |
| scale(dst,Scalar(1./nfft),nfft); // scale the time series |
| } |
| |
| template<typename OutputDerived, typename ComplexDerived> |
| inline |
| void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1) |
| { |
| typedef typename ComplexDerived::Scalar src_type; |
| typedef typename OutputDerived::Scalar dst_type; |
| const bool realfft= (NumTraits<dst_type>::IsComplex == 0); |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) |
| EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) |
| EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time |
| EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value), |
| YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
| EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, |
| THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) |
| |
| if (nfft<1) { //automatic FFT size determination |
| if ( realfft && HasFlag(HalfSpectrum) ) |
| nfft = 2*(src.size()-1); //assume even fft size |
| else |
| nfft = src.size(); |
| } |
| dst.derived().resize( nfft ); |
| |
| // check for nfft that does not fit the input data size |
| Index resize_input= ( realfft && HasFlag(HalfSpectrum) ) |
| ? ( (nfft/2+1) - src.size() ) |
| : ( nfft - src.size() ); |
| |
| if ( src.innerStride() != 1 || resize_input ) { |
| // if the vector is strided, then we need to copy it to a packed temporary |
| Matrix<src_type,1,Dynamic> tmp; |
| if ( resize_input ) { |
| size_t ncopy = (std::min)(src.size(),src.size() + resize_input); |
| tmp.setZero(src.size() + resize_input); |
| if ( realfft && HasFlag(HalfSpectrum) ) { |
| // pad at the Nyquist bin |
| tmp.head(ncopy) = src.head(ncopy); |
| tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin |
| }else{ |
| size_t nhead,ntail; |
| nhead = 1+ncopy/2-1; // range [0:pi) |
| ntail = ncopy/2-1; // range (-pi:0) |
| tmp.head(nhead) = src.head(nhead); |
| tmp.tail(ntail) = src.tail(ntail); |
| if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it |
| tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5); |
| }else{ // expanding -- split the old Nyquist bin into two halves |
| tmp(nhead) = src(nhead) * src_type(.5); |
| tmp(tmp.size()-nhead) = tmp(nhead); |
| } |
| } |
| }else{ |
| tmp = src; |
| } |
| inv( &dst[0],&tmp[0], nfft); |
| }else{ |
| inv( &dst[0],&src[0], nfft); |
| } |
| } |
| |
| template <typename _Output> |
| inline |
| void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1) |
| { |
| if (nfft<1) |
| nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size(); |
| dst.resize( nfft ); |
| inv( &dst[0],&src[0],nfft); |
| } |
| |
| |
| /* |
| // TODO: multi-dimensional FFTs |
| inline |
| void inv2(Complex * dst, const Complex * src, int n0,int n1) |
| { |
| m_impl.inv2(dst,src,n0,n1); |
| if ( HasFlag( Unscaled ) == false) |
| scale(dst,1./(n0*n1),n0*n1); |
| } |
| */ |
| |
| inline |
| impl_type & impl() {return m_impl;} |
| private: |
| |
| template <typename T_Data> |
| inline |
| void scale(T_Data * x,Scalar s,Index nx) |
| { |
| #if 1 |
| for (int k=0;k<nx;++k) |
| *x++ *= s; |
| #else |
| if ( ((ptrdiff_t)x) & 15 ) |
| Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s; |
| else |
| Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s; |
| //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; |
| #endif |
| } |
| |
| inline |
| void ReflectSpectrum(Complex * freq, Index nfft) |
| { |
| // create the implicit right-half spectrum (conjugate-mirror of the left-half) |
| Index nhbins=(nfft>>1)+1; |
| for (Index k=nhbins;k < nfft; ++k ) |
| freq[k] = conj(freq[nfft-k]); |
| } |
| |
| impl_type m_impl; |
| int m_flag; |
| }; |
| |
| template<typename T_SrcMat,typename T_FftIfc> |
| template<typename T_DestMat> inline |
| void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const |
| { |
| m_ifc.fwd( dst, m_src, m_nfft); |
| } |
| |
| template<typename T_SrcMat,typename T_FftIfc> |
| template<typename T_DestMat> inline |
| void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const |
| { |
| m_ifc.inv( dst, m_src, m_nfft); |
| } |
| |
| } |
| #endif |
| /* vim: set filetype=cpp et sw=2 ts=2 ai: */ |