| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_AUTODIFF_VECTOR_H |
| #define EIGEN_AUTODIFF_VECTOR_H |
| |
| namespace Eigen { |
| |
| /* \class AutoDiffScalar |
| * \brief A scalar type replacement with automatic differentation capability |
| * |
| * \param DerType the vector type used to store/represent the derivatives (e.g. Vector3f) |
| * |
| * This class represents a scalar value while tracking its respective derivatives. |
| * |
| * It supports the following list of global math function: |
| * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos, |
| * - internal::abs, internal::sqrt, internal::pow, internal::exp, internal::log, internal::sin, internal::cos, |
| * - internal::conj, internal::real, internal::imag, internal::abs2. |
| * |
| * AutoDiffScalar can be used as the scalar type of an Eigen::Matrix object. However, |
| * in that case, the expression template mechanism only occurs at the top Matrix level, |
| * while derivatives are computed right away. |
| * |
| */ |
| template<typename ValueType, typename JacobianType> |
| class AutoDiffVector |
| { |
| public: |
| //typedef typename internal::traits<ValueType>::Scalar Scalar; |
| typedef typename internal::traits<ValueType>::Scalar BaseScalar; |
| typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar; |
| typedef ActiveScalar Scalar; |
| typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType; |
| typedef typename JacobianType::Index Index; |
| |
| inline AutoDiffVector() {} |
| |
| inline AutoDiffVector(const ValueType& values) |
| : m_values(values) |
| { |
| m_jacobian.setZero(); |
| } |
| |
| |
| CoeffType operator[] (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| const CoeffType operator[] (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| |
| CoeffType operator() (Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| const CoeffType operator() (Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| |
| CoeffType coeffRef(Index i) { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| const CoeffType coeffRef(Index i) const { return CoeffType(m_values[i], m_jacobian.col(i)); } |
| |
| Index size() const { return m_values.size(); } |
| |
| // FIXME here we could return an expression of the sum |
| Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); } |
| |
| |
| inline AutoDiffVector(const ValueType& values, const JacobianType& jac) |
| : m_values(values), m_jacobian(jac) |
| {} |
| |
| template<typename OtherValueType, typename OtherJacobianType> |
| inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other) |
| : m_values(other.values()), m_jacobian(other.jacobian()) |
| {} |
| |
| inline AutoDiffVector(const AutoDiffVector& other) |
| : m_values(other.values()), m_jacobian(other.jacobian()) |
| {} |
| |
| template<typename OtherValueType, typename OtherJacobianType> |
| inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other) |
| { |
| m_values = other.values(); |
| m_jacobian = other.jacobian(); |
| return *this; |
| } |
| |
| inline AutoDiffVector& operator=(const AutoDiffVector& other) |
| { |
| m_values = other.values(); |
| m_jacobian = other.jacobian(); |
| return *this; |
| } |
| |
| inline const ValueType& values() const { return m_values; } |
| inline ValueType& values() { return m_values; } |
| |
| inline const JacobianType& jacobian() const { return m_jacobian; } |
| inline JacobianType& jacobian() { return m_jacobian; } |
| |
| template<typename OtherValueType,typename OtherJacobianType> |
| inline const AutoDiffVector< |
| typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type, |
| typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type > |
| operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const |
| { |
| return AutoDiffVector< |
| typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type, |
| typename MakeCwiseBinaryOp<internal::scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >( |
| m_values + other.values(), |
| m_jacobian + other.jacobian()); |
| } |
| |
| template<typename OtherValueType, typename OtherJacobianType> |
| inline AutoDiffVector& |
| operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) |
| { |
| m_values += other.values(); |
| m_jacobian += other.jacobian(); |
| return *this; |
| } |
| |
| template<typename OtherValueType,typename OtherJacobianType> |
| inline const AutoDiffVector< |
| typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type, |
| typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type > |
| operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const |
| { |
| return AutoDiffVector< |
| typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type, |
| typename MakeCwiseBinaryOp<internal::scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >( |
| m_values - other.values(), |
| m_jacobian - other.jacobian()); |
| } |
| |
| template<typename OtherValueType, typename OtherJacobianType> |
| inline AutoDiffVector& |
| operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) |
| { |
| m_values -= other.values(); |
| m_jacobian -= other.jacobian(); |
| return *this; |
| } |
| |
| inline const AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type > |
| operator-() const |
| { |
| return AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_opposite_op<Scalar>, JacobianType>::Type >( |
| -m_values, |
| -m_jacobian); |
| } |
| |
| inline const AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type> |
| operator*(const BaseScalar& other) const |
| { |
| return AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >( |
| m_values * other, |
| m_jacobian * other); |
| } |
| |
| friend inline const AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type > |
| operator*(const Scalar& other, const AutoDiffVector& v) |
| { |
| return AutoDiffVector< |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, ValueType>::Type, |
| typename MakeCwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>::Type >( |
| v.values() * other, |
| v.jacobian() * other); |
| } |
| |
| // template<typename OtherValueType,typename OtherJacobianType> |
| // inline const AutoDiffVector< |
| // CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType> |
| // CwiseBinaryOp<internal::scalar_sum_op<Scalar>, |
| // CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>, |
| // CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > > |
| // operator*(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const |
| // { |
| // return AutoDiffVector< |
| // CwiseBinaryOp<internal::scalar_multiple_op<Scalar>, ValueType, OtherValueType> |
| // CwiseBinaryOp<internal::scalar_sum_op<Scalar>, |
| // CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, JacobianType>, |
| // CwiseUnaryOp<internal::scalar_multiple_op<Scalar>, OtherJacobianType> > >( |
| // m_values.cwise() * other.values(), |
| // (m_jacobian * other.values()) + (m_values * other.jacobian())); |
| // } |
| |
| inline AutoDiffVector& operator*=(const Scalar& other) |
| { |
| m_values *= other; |
| m_jacobian *= other; |
| return *this; |
| } |
| |
| template<typename OtherValueType,typename OtherJacobianType> |
| inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) |
| { |
| *this = *this * other; |
| return *this; |
| } |
| |
| protected: |
| ValueType m_values; |
| JacobianType m_jacobian; |
| |
| }; |
| |
| } |
| |
| #endif // EIGEN_AUTODIFF_VECTOR_H |