| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <unsupported/Eigen/AlignedVector3> |
| |
| template<typename Scalar> |
| void alignedvector3() |
| { |
| Scalar s1 = internal::random<Scalar>(); |
| Scalar s2 = internal::random<Scalar>(); |
| typedef Matrix<Scalar,3,1> RefType; |
| typedef Matrix<Scalar,3,3> Mat33; |
| typedef AlignedVector3<Scalar> FastType; |
| RefType r1(RefType::Random()), r2(RefType::Random()), r3(RefType::Random()), |
| r4(RefType::Random()), r5(RefType::Random()), r6(RefType::Random()); |
| FastType f1(r1), f2(r2), f3(r3), f4(r4), f5(r5), f6(r6); |
| Mat33 m1(Mat33::Random()); |
| |
| VERIFY_IS_APPROX(f1,r1); |
| VERIFY_IS_APPROX(f4,r4); |
| |
| VERIFY_IS_APPROX(f4+f1,r4+r1); |
| VERIFY_IS_APPROX(f4-f1,r4-r1); |
| VERIFY_IS_APPROX(f4+f1-f2,r4+r1-r2); |
| VERIFY_IS_APPROX(f4+=f3,r4+=r3); |
| VERIFY_IS_APPROX(f4-=f5,r4-=r5); |
| VERIFY_IS_APPROX(f4-=f5+f1,r4-=r5+r1); |
| VERIFY_IS_APPROX(f5+f1-s1*f2,r5+r1-s1*r2); |
| VERIFY_IS_APPROX(f5+f1/s2-s1*f2,r5+r1/s2-s1*r2); |
| |
| VERIFY_IS_APPROX(m1*f4,m1*r4); |
| VERIFY_IS_APPROX(f4.transpose()*m1,r4.transpose()*m1); |
| |
| VERIFY_IS_APPROX(f2.dot(f3),r2.dot(r3)); |
| VERIFY_IS_APPROX(f2.cross(f3),r2.cross(r3)); |
| VERIFY_IS_APPROX(f2.norm(),r2.norm()); |
| |
| VERIFY_IS_APPROX(f2.normalized(),r2.normalized()); |
| |
| VERIFY_IS_APPROX((f2+f1).normalized(),(r2+r1).normalized()); |
| |
| f2.normalize(); |
| r2.normalize(); |
| VERIFY_IS_APPROX(f2,r2); |
| } |
| |
| void test_alignedvector3() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST( alignedvector3<float>() ); |
| } |
| } |